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Welcome to Lasagne

Lasagne is a lightweight library to build and train neural networks in Theano.

Lasagne is a work in progress, input is welcome. The available documentation is
limited for now. The project is on GitHub [https://github.com/Lasagne/Lasagne].


User Guide

The Lasagne user guide explains how to install Lasagne, how to build and train
neural networks using Lasagne, and how to contribute to the library as a
developer.
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Installation

Lasagne has a couple of prerequisites that need to be installed first, but it
is not very picky about versions. The single exception is Theano: Due to its
tight coupling to Theano, you will have to install a recent version of Theano
(usually more recent than the latest official release!) fitting the version of
Lasagne you choose to install.

Most of the instructions below assume you are running a Linux or Mac system;
please do not hesitate to suggest instructions for Windows via the Edit on
GitHub link on the top right!

If you run into any trouble, please check the Theano installation instructions [http://deeplearning.net/software/theano/install.html] which cover installing
the prerequisites for a range of operating systems, or ask for help on our
mailing list [https://groups.google.com/d/forum/lasagne-users].


Prerequisites


Python + pip

Lasagne currently requires Python 2.7 or 3.4 to run. Please install Python via
the package manager of your operating system if it is not included already.

Python includes pip for installing additional modules that are not shipped
with your operating system, or shipped in an old version, and we will make use
of it below. We recommend installing these modules into your home directory
via --user, or into a virtual environment [http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/]
via virtualenv.




C compiler

Theano requires a working C compiler, and numpy/scipy require a compiler as
well if you install them via pip. On Linux, the default compiler is usually
gcc, and on Mac OS, it’s clang. Again, please install them via the
package manager of your operating system.




numpy/scipy + BLAS

Lasagne requires numpy of version 1.6.2 or above, and Theano also requires
scipy 0.11 or above. Numpy/scipy rely on a BLAS library to provide fast linear
algebra routines. They will work fine without one, but a lot slower, so it is
worth getting this right (but this is less important if you plan to use a GPU).

If you install numpy and scipy via your operating system’s package manager,
they should link to the BLAS library installed in your system. If you install
numpy and scipy via pip install numpy and pip install scipy, make sure
to have development headers for your BLAS library installed (e.g., the
libopenblas-dev package on Debian/Ubuntu) while running the installation
command. Please refer to the numpy/scipy build instructions [http://www.scipy.org/scipylib/building/index.html] if in doubt.




Theano

The version to install depends on the Lasagne version you choose, so this will
be handled below.






Stable Lasagne release

Lasagne 0.1 requires a more recent version of Theano than the one available
on PyPI. To install a version that is known to work, run the following command:

pip install -r https://raw.githubusercontent.com/Lasagne/Lasagne/v0.1/requirements.txt






Warning

An even more recent version of Theano will often work as well, but at the
time of writing, a simple pip install Theano will give you a version that
is too old.



To install release 0.1 of Lasagne from PyPI, run the following command:

pip install Lasagne==0.1





If you do not use virtualenv, add --user to both commands to install
into your home directory instead. To upgrade from an earlier installation, add
--upgrade.




Bleeding-edge version

The latest development version of Lasagne usually works fine with the latest
development version of Theano. To install both, run the following commands:

pip install --upgrade https://github.com/Theano/Theano/archive/master.zip
pip install --upgrade https://github.com/Lasagne/Lasagne/archive/master.zip





Again, add --user if you want to install to your home directory instead.




Development installation

Alternatively, you can install Lasagne (and optionally Theano) from source,
in a way that any changes to your local copy of the source tree take effect
without requiring a reinstall. This is often referred to as editable or
development mode. Firstly, you will need to obtain a copy of the source tree:

git clone https://github.com/Lasagne/Lasagne.git





It will be cloned to a subdirectory called Lasagne. Make sure to place it
in some permanent location, as for an editable installation, Python will
import the module directly from this directory and not copy over the files.
Enter the directory and install the known good version of Theano:

cd Lasagne
pip install -r requirements.txt





Alternatively, install the bleeding-edge version of Theano as described in the
previous section.

To install the Lasagne package itself, in editable mode, run:

pip install --editable .





As always, add --user to install it to your home directory instead.

Optional: If you plan to contribute to Lasagne, you will need to fork the
Lasagne repository on GitHub. This will create a repository under your user
account. Update your local clone to refer to the official repository as
upstream, and your personal fork as origin:

git remote rename origin upstream
git remote add origin https://github.com/<your-github-name>/Lasagne.git





If you set up an SSH key [https://help.github.com/categories/ssh/], use the
SSH clone URL instead: git@github.com:<your-github-name>/Lasagne.git.

You can now use this installation to develop features and send us pull requests
on GitHub, see Development!




GPU support

Thanks to Theano, Lasagne transparently supports training your networks on a
GPU, which may be 10 to 50 times faster than training them on a CPU. Currently,
this requires an NVIDIA GPU with CUDA support, and some additional software for
Theano to use it.


CUDA

Install the latest CUDA Toolkit and possibly the corresponding driver available
from NVIDIA: https://developer.nvidia.com/cuda-downloads

Closely follow the Getting Started Guide linked underneath the download table
to be sure you don’t mess up your system by installing conflicting drivers.

After installation, make sure /usr/local/cuda/bin is in your PATH, so
nvcc --version works. Also make sure /usr/local/cuda/lib64 is in your
LD_LIBRARY_PATH, so the toolkit libraries can be found.




Theano

If CUDA is set up correctly, the following should print some information on
your GPU (the first CUDA-capable GPU in your system if you have multiple ones):

THEANO_FLAGS=device=gpu python -c "import theano; print theano.sandbox.cuda.device_properties(0)"





To configure Theano to use the GPU by default, create a file .theanorc
directly in your home directory, with the following contents:

[global]
floatX = float32
device = gpu





Optionally add allow_gc = False for some extra performance at the expense
of (sometimes substantially) higher GPU memory usage.

If you run into problems, please check Theano’s instructions for Using the GPU [http://deeplearning.net/software/theano/tutorial/using_gpu.html].




cuDNN

NVIDIA provides a library for common neural network operations that especially
speeds up Convolutional Neural Networks (CNNs). Again, it can be obtained from
NVIDIA (after registering as a developer): https://developer.nvidia.com/cudnn

Note that it requires a reasonably modern GPU with Compute Capability 3.0 or higher;
see NVIDIA’s list of CUDA GPUs [https://developer.nvidia.com/cuda-gpus].

To install it, copy the *.h files to /usr/local/cuda/include and the
lib* files to /usr/local/cuda/lib64.

To check whether it is found by Theano, run the following command:

python -c "import theano; print theano.sandbox.cuda.dnn.dnn_available() or theano.sandbox.cuda.dnn.dnn_available.msg"





It will print True if everything is fine, or an error message otherwise.
There are no additional steps required for Theano to make use of cuDNN.
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Tutorial

This tutorial will walk you through building a handwritten digits classifier
using the MNIST dataset, arguably the “Hello World” of neural networks.
More tutorials and examples can be found in the Lasagne Recipes [https://github.com/Lasagne/Recipes] repository.


Before we start

The tutorial assumes that you are somewhat familiar with neural networks and
Theano (the library which Lasagne is built on top of). You can try to learn
both at once from the Deeplearning Tutorial [http://deeplearning.net/tutorial/].

For a more slow-paced introduction to artificial neural networks, we recommend
Convolutional Neural Networks for Visual Recognition [http://cs231n.github.io/] by Andrej Karpathy et
al., Neural Networks and Deep Learning [http://neuralnetworksanddeeplearning.com/] by Michael Nielsen or a standard text
book such as “Machine Learning” by Tom Mitchell.

To learn more about Theano, have a look at the Theano tutorial [http://deeplearning.net/software/theano/tutorial/]. You will not
need all of it, but a basic understanding of how Theano works is required to be
able to use Lasagne. If you’re new to Theano, going through that tutorial up to
(and including) “Graph Structures” should get you covered!




Run the MNIST example

In this first part of the tutorial, we will just run the MNIST example that’s
included in the source distribution of Lasagne.

We assume that you have already run through the Installation. If you
haven’t done so already, get a copy of the source tree of Lasagne, and navigate
to the folder in a terminal window. Enter the examples folder and run the
mnist.py example script:

cd examples
python mnist.py





If everything is set up correctly, you will get an output like the following:

Using gpu device 0: GeForce GT 640
Loading data...
Downloading MNIST dataset...
Building model and compiling functions...
Starting training...

Epoch 1 of 500 took 1.858s
  training loss:                1.233348
  validation loss:              0.405868
  validation accuracy:          88.78 %
Epoch 2 of 500 took 1.845s
  training loss:                0.571644
  validation loss:              0.310221
  validation accuracy:          91.24 %
Epoch 3 of 500 took 1.845s
  training loss:                0.471582
  validation loss:              0.265931
  validation accuracy:          92.35 %
Epoch 4 of 500 took 1.847s
  training loss:                0.412204
  validation loss:              0.238558
  validation accuracy:          93.05 %
...





The example script allows you to try three different models, selected via the
first command line argument. Run the script with python mnist.py --help for
more information and feel free to play around with it some more before we have
a look at the implementation.




Understand the MNIST example

Let’s now investigate what’s needed to make that happen! To follow along, open
up the source code in your favorite editor (or online: mnist.py [https://github.com/Lasagne/Lasagne/blob/master/examples/mnist.py]).


Preface

The first thing you might notice is that besides Lasagne, we also import numpy
and Theano:

import numpy as np
import theano
import theano.tensor as T

import lasagne





While Lasagne is built on top of Theano, it is meant as a supplement helping
with some tasks, not as a replacement. You will always mix Lasagne with some
vanilla Theano code.




Loading data

The first piece of code defines a function load_dataset(). Its purpose is
to download the MNIST dataset (if it hasn’t been downloaded yet) and return it
in the form of regular numpy arrays. There is no Lasagne involved at all, so
for the purpose of this tutorial, we can regard it as:

def load_dataset():
    ...
    return X_train, y_train, X_val, y_val, X_test, y_test





X_train.shape is (50000, 1, 28, 28), to be interpreted as: 50,000
images of 1 channel, 28 rows and 28 columns each. Note that the number of
channels is 1 because we have monochrome input. Color images would have 3
channels, spectrograms also would have a single channel.
y_train.shape is simply (50000,), that is, it is a vector the same
length of X_train giving an integer class label for each image – namely,
the digit between 0 and 9 depicted in the image (according to the human
annotator who drew that digit).




Building the model

This is where Lasagne steps in. It allows you to define an arbitrarily
structured neural network by creating and stacking or merging layers.
Since every layer knows its immediate incoming layers, the output layer (or
output layers) of a network double as a handle to the network as a whole, so
usually this is the only thing we will pass on to the rest of the code.

As mentioned above, mnist.py supports three types of models, and we
implement that via three easily exchangeable functions of the same interface.
First, we’ll define a function that creates a Multi-Layer Perceptron (MLP) of
a fixed architecture, explaining all the steps in detail. We’ll then present
a function generating an MLP of a custom architecture. Finally, we’ll
show how to create a Convolutional Neural Network (CNN).


Multi-Layer Perceptron (MLP)

The first function, build_mlp(), creates an MLP of two hidden layers of
800 units each, followed by a softmax output layer of 10 units. It applies 20%
dropout to the input data and 50% dropout to the hidden layers. It is similar,
but not fully equivalent to the smallest MLP in [Hinton2012] (that paper uses
different nonlinearities, weight initialization and training).

The foundation of each neural network in Lasagne is an
InputLayer instance (or multiple of those)
representing the input data that will subsequently be fed to the network. Note
that the InputLayer is not tied to any specific data yet, but only holds
the shape of the data that will be passed to the network. In addition, it
creates or can be linked to a Theano variable [http://deeplearning.net/software/theano/glossary.html#term-variable] that
will represent the network input in the Theano graph [http://deeplearning.net/software/theano/glossary.html#term-expression-graph]
we’ll build from the network later.
Thus, our function starts like this:

def build_mlp(input_var=None):
    l_in = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                     input_var=input_var)





The four numbers in the shape tuple represent, in order:
(batchsize, channels, rows, columns).
Here we’ve set the batchsize to None, which means the network will accept
input data of arbitrary batchsize after compilation. If you know the batchsize
beforehand and do not need this flexibility, you should give the batchsize
here – especially for convolutional layers, this can allow Theano to apply
some optimizations.
input_var denotes the Theano variable we want to link the network’s input
layer to. If it is omitted (or set to None), the layer will just create a
suitable variable itself, but it can be handy to link an existing variable to
the network at construction time – especially if you’re creating networks of
multiple input layers. Here, we link it to a variable given as an argument to
the build_mlp() function.

Before adding the first hidden layer, we’ll apply 20% dropout to the input
data. This is realized via a DropoutLayer instance:

l_in_drop = lasagne.layers.DropoutLayer(l_in, p=0.2)





Note that the first constructor argument is the incoming layer, such that
l_in_drop is now stacked on top of l_in. All layers work this way,
except for layers that merge multiple inputs: those accept a list of incoming
layers as their first constructor argument instead.

We’ll proceed with the first fully-connected hidden layer of 800 units. Note
that when stacking a DenseLayer on
higher-order input tensors, they will be flattened implicitly so we don’t need
to care about that. In this case, the input will be flattened from 1x28x28
images to 784-dimensional vectors.

l_hid1 = lasagne.layers.DenseLayer(
        l_in_drop, num_units=800,
        nonlinearity=lasagne.nonlinearities.rectify,
        W=lasagne.init.GlorotUniform())





Again, the first constructor argument means that we’re stacking l_hid1 on
top of l_in_drop.
num_units simply gives the number of units for this fully-connected layer.
nonlinearity takes a nonlinearity function, several of which are defined
in lasagne.nonlinearities. Here we’ve chosen the linear rectifier, so
we’ll obtain ReLUs.
Finally, lasagne.init.GlorotUniform() gives the initializer for the
weight matrix W. This particular initializer samples weights from a uniform
distribution of a carefully chosen range. Other initializers are available in
lasagne.init, and alternatively, W could also have been initialized
from a Theano shared variable or numpy array of the correct shape (784x800 in
this case, as the input to this layer has 1*28*28=784 dimensions).
Note that lasagne.init.GlorotUniform() is the default, so we’ll omit it
from here – we just wanted to highlight that there is a choice.

We’ll now add dropout of 50%, another 800-unit dense layer and 50% dropout
again:

l_hid1_drop = lasagne.layers.DropoutLayer(l_hid1, p=0.5)

l_hid2 = lasagne.layers.DenseLayer(
        l_hid1_drop, num_units=800,
        nonlinearity=lasagne.nonlinearities.rectify)

l_hid2_drop = lasagne.layers.DropoutLayer(l_hid2, p=0.5)





Finally, we’ll add the fully-connected output layer. The main difference is
that it uses the softmax nonlinearity, as we’re planning to solve a 10-class
classification problem with this network.

l_out = lasagne.layers.DenseLayer(
        l_hid2_drop, num_units=10,
        nonlinearity=lasagne.nonlinearities.softmax)





As mentioned above, each layer is linked to its incoming layer(s), so we only
need the output layer(s) to access a network in Lasagne:

return l_out








Custom MLP

The second function has a slightly more extensive signature:

def build_custom_mlp(input_var=None, depth=2, width=800, drop_input=.2,
                     drop_hidden=.5):





By default, it creates the same network as build_mlp() described above, but
it can be customized with respect to the number and size of hidden layers, as
well as the amount of input and hidden dropout. This demonstrates how creating
a network in Python code can be a lot more flexible than a configuration file.
See for yourself:

# Input layer and dropout (with shortcut `dropout` for `DropoutLayer`):
network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                    input_var=input_var)
if drop_input:
    network = lasagne.layers.dropout(network, p=drop_input)
# Hidden layers and dropout:
nonlin = lasagne.nonlinearities.rectify
for _ in range(depth):
    network = lasagne.layers.DenseLayer(
            network, width, nonlinearity=nonlin)
    if drop_hidden:
        network = lasagne.layers.dropout(network, p=drop_hidden)
# Output layer:
softmax = lasagne.nonlinearities.softmax
network = lasagne.layers.DenseLayer(network, 10, nonlinearity=softmax)
return network





With two if clauses and a for loop, this network definition allows
varying the architecture in a way that would be impossible for a .yaml file
in Pylearn2 [http://deeplearning.net/software/pylearn2/] or a .cfg file in cuda-convnet [https://code.google.com/p/cuda-convnet/].

Note that to make the code easier, all the layers are just called network
here – there is no need to give them different names if all we return is the
last one we created anyway; we just used different names before for clarity.




Convolutional Neural Network (CNN)

Finally, the build_cnn() function creates a CNN of two convolution and
pooling stages, a fully-connected hidden layer and a fully-connected output
layer.
The function begins like the others:

def build_cnn(input_var=None):
    network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                        input_var=input_var)





We don’t apply dropout to the inputs, as this tends to work less well for
convolutional layers. Instead of a DenseLayer, we now add a Conv2DLayer with 32 filters of size 5x5 on top:

network = lasagne.layers.Conv2DLayer(
        network, num_filters=32, filter_size=(5, 5),
        nonlinearity=lasagne.nonlinearities.rectify,
        W=lasagne.init.GlorotUniform())





The nonlinearity and weight initializer can be given just as for the
DenseLayer (and again, GlorotUniform() is the default, we’ll omit it
from now). Strided and padded convolutions are supported as well; see the
Conv2DLayer docstring.


Note

For experts: Conv2DLayer will create a convolutional layer using
T.nnet.conv2d, Theano’s default convolution. On compilation for GPU,
Theano replaces this with a cuDNN [https://developer.nvidia.com/cudnn]-based implementation if available,
otherwise falls back to a gemm-based implementation. For details on this,
please see the Theano convolution documentation [http://deeplearning.net/software/theano/library/tensor/nnet/conv.html].

Lasagne also provides convolutional layers directly enforcing a specific
implementation: lasagne.layers.dnn.Conv2DDNNLayer to enforce
cuDNN, lasagne.layers.corrmm.Conv2DMMLayer to enforce the
gemm-based one, lasagne.layers.cuda_convnet.Conv2DCCLayer for
Krizhevsky’s cuda-convnet [https://code.google.com/p/cuda-convnet/].



We then apply max-pooling of factor 2 in both dimensions, using a
MaxPool2DLayer instance:

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))





We add another convolution and pooling stage like the ones before:

network = lasagne.layers.Conv2DLayer(
        network, num_filters=32, filter_size=(5, 5),
        nonlinearity=lasagne.nonlinearities.rectify)
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))





Then a fully-connected layer of 256 units with 50% dropout on its inputs
(using the lasagne.layers.dropout shortcut directly inline):

network = lasagne.layers.DenseLayer(
        lasagne.layers.dropout(network, p=.5),
        num_units=256,
        nonlinearity=lasagne.nonlinearities.rectify)





And finally a 10-unit softmax output layer, again with 50% dropout:

network = lasagne.layers.DenseLayer(
        lasagne.layers.dropout(network, p=.5),
        num_units=10,
        nonlinearity=lasagne.nonlinearities.rectify)

return network










Training the model

The remaining part of the mnist.py script copes with setting up and running
a training loop over the MNIST dataset.


Dataset iteration

It first defines a short helper function for synchronously iterating over two
numpy arrays of input data and targets, respectively, in mini-batches of a
given number of items. For the purpose of this tutorial, we can shorten it to:

def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
    if shuffle:
        ...
    for ...:
        yield inputs[...], targets[...]





All that’s relevant is that it is a generator function that serves one batch of
inputs and targets at a time until the given dataset (in inputs and
targets) is exhausted, either in sequence or in random order. Below we will
plug this function into our training loop, validation loop and test loop.




Preparation

Let’s now focus on the main() function. A bit simplified, it begins like
this:

# Load the dataset
X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()
# Prepare Theano variables for inputs and targets
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
# Create neural network model
network = build_mlp(input_var)





The first line loads the inputs and targets of the MNIST dataset as numpy
arrays, split into training, validation and test data.
The next two statements define symbolic Theano variables that will represent
a mini-batch of inputs and targets in all the Theano expressions we will
generate for network training and inference. They are not tied to any data yet,
but their dimensionality and data type is fixed already and matches the actual
inputs and targets we will process later.
Finally, we call one of the three functions for building the Lasagne network,
depending on the first command line argument – we’ve just removed command line
handling here for clarity. Note that we hand the symbolic input variable to
build_mlp() so it will be linked to the network’s input layer.




Loss and update expressions

Continuing, we create a loss expression to be minimized in training:

prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()





The first step generates a Theano expression for the network output given the
input variable linked to the network’s input layer(s). The second step defines
a Theano expression for the categorical cross-entropy loss between said network
output and the targets. Finally, as we need a scalar loss, we simply take the
mean over the mini-batch. Depending on the problem you are solving, you will
need different loss functions, see lasagne.objectives for more.

Having the model and the loss function defined, we create update expressions
for training the network. An update expression describes how to change the
trainable parameters of the network at each presented mini-batch. We will use
Stochastic Gradient Descent (SGD) with Nesterov momentum here, but the
lasagne.updates module offers several others you can plug in instead:

params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.nesterov_momentum(
        loss, params, learning_rate=0.01, momentum=0.9)





The first step collects all Theano SharedVariable instances making up the
trainable parameters of the layer, and the second step generates an update
expression for each parameter.

For monitoring progress during training, after each epoch, we evaluate the
network on the validation set. We need a slightly different loss expression
for that:

test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction,
                                                        target_var)
test_loss = test_loss.mean()





The crucial difference is that we pass deterministic=True to the
get_output call. This causes all
nondeterministic layers to switch to a deterministic implementation, so in our
case, it disables the dropout layers.
As an additional monitoring quantity, we create an expression for the
classification accuracy:

test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
                  dtype=theano.config.floatX)





It also builds on the deterministic test_prediction expression.




Compilation

Equipped with all the necessary Theano expressions, we’re now ready to compile
a function performing a training step:

train_fn = theano.function([input_var, target_var], loss, updates=updates)





This tells Theano to generate and compile a function taking two inputs – a
mini-batch of images and a vector of corresponding targets – and returning a
single output: the training loss. Additionally, each time it is invoked, it
applies all parameter updates in the updates dictionary, thus performing a
gradient descent step with Nesterov momentum.

For validation, we compile a second function:

val_fn = theano.function([input_var, target_var], [test_loss, test_acc])





This one also takes a mini-batch of images and targets, then returns the
(deterministic) loss and classification accuracy, not performing any updates.




Training loop

We’re finally ready to write the training loop. In essence, we just need to do
the following:

for epoch in range(num_epochs):
    for batch in iterate_minibatches(X_train, y_train, 500, shuffle=True):
        inputs, targets = batch
        train_fn(inputs, targets)





This uses our dataset iteration helper function to iterate over the training
data in random order, in mini-batches of 500 items each, for num_epochs
epochs, and calls the training function we compiled to perform an update step
of the network parameters.

But to be able to monitor the training progress, we capture the training loss,
compute the validation loss and print some information to the console every
time an epoch finishes:

for epoch in range(num_epochs):
    # In each epoch, we do a full pass over the training data:
    train_err = 0
    train_batches = 0
    start_time = time.time()
    for batch in iterate_minibatches(X_train, y_train, 500, shuffle=True):
        inputs, targets = batch
        train_err += train_fn(inputs, targets)
        train_batches += 1

    # And a full pass over the validation data:
    val_err = 0
    val_acc = 0
    val_batches = 0
    for batch in iterate_minibatches(X_val, y_val, 500, shuffle=False):
        inputs, targets = batch
        err, acc = val_fn(inputs, targets)
        val_err += err
        val_acc += acc
        val_batches += 1

    # Then we print the results for this epoch:
    print("Epoch {} of {} took {:.3f}s".format(
        epoch + 1, num_epochs, time.time() - start_time))
    print("  training loss:\t\t{:.6f}".format(train_err / train_batches))
    print("  validation loss:\t\t{:.6f}".format(val_err / val_batches))
    print("  validation accuracy:\t\t{:.2f} %".format(
        val_acc / val_batches * 100))





At the very end, we re-use the val_fn() function to compute the loss and
accuracy on the test set, finishing the script.








Where to go from here

This finishes our introductory tutorial. For more information on what you can
do with Lasagne’s layers, just continue reading through Layers and
Creating custom layers.
More tutorials, examples and code snippets can be found in the Lasagne
Recipes [https://github.com/Lasagne/Recipes] repository.
Finally, the reference lists and explains all layers (lasagne.layers),
weight initializers (lasagne.init), nonlinearities
(lasagne.nonlinearities), loss expressions (lasagne.objectives),
training methods (lasagne.updates) and regularizers
(lasagne.regularization) included in the library, and should also make
it simple to create your own.




	[Hinton2012]	Improving neural networks by preventing co-adaptation
of feature detectors. http://arxiv.org/abs/1207.0580
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Layers

The lasagne.layers module provides various classes representing the layers
of a neural network. All of them are subclasses of the
lasagne.layers.Layer base class.


Creating a layer

A layer can be created as an instance of a Layer subclass. For example, a
dense layer can be created as follows:

>>> import lasagne
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100) 





This will create a dense layer with 100 units, connected to another layer
l_in.




Creating a network

Note that for almost all types of layers, you will have to specify one or more
other layers that the layer you are creating gets its input from. The main
exception is InputLayer, which can be used to represent the input of
a network.

Chaining layer instances together like this will allow you to specify your
desired network structure. Note that the same layer can be used as input to
multiple other layers, allowing for arbitrary tree and directed acyclic graph
(DAG) structures.

Here is an example of an MLP with a single hidden layer:

>>> import theano.tensor as T
>>> l_in = lasagne.layers.InputLayer((100, 50))
>>> l_hidden = lasagne.layers.DenseLayer(l_in, num_units=200)
>>> l_out = lasagne.layers.DenseLayer(l_hidden, num_units=10,
...                                   nonlinearity=T.nnet.softmax)





The first layer of the network is an InputLayer, which represents the input.
When creating an input layer, you should specify the shape of the input data.
In this example, the input is a matrix with shape (100, 50), representing a
batch of 100 data points, where each data point is a vector of length 50.
The first dimension of a tensor is usually the batch dimension, following the
established Theano and scikit-learn conventions.

The hidden layer of the network is a dense layer with 200 units, taking its
input from the input layer. Note that we did not specify the nonlinearity of
the hidden layer. A layer with rectified linear units will be created by
default.

The output layer of the network is a dense layer with 10 units and a softmax
nonlinearity, allowing for 10-way classification of the input vectors.

Note also that we did not create any object representing the entire network.
Instead, the output layer instance l_out is also used to refer to the entire
network in Lasagne.




Naming layers

For convenience, you can name a layer by specifying the name keyword
argument:

>>> l_hidden = lasagne.layers.DenseLayer(l_in, num_units=200,
...                                      name="hidden_layer")








Initializing parameters

Many types of layers, such as DenseLayer, have trainable parameters.
These are referred to by short names that match the conventions used in modern
deep learning literature. For example, a weight matrix will usually be called
W, and a bias vector will usually be b.

When creating a layer with trainable parameters, Theano shared variables will
be created for them and initialized automatically. You can optionally specify
your own initialization strategy by using keyword arguments that match the
parameter variable names. For example:

>>> l = lasagne.layers.DenseLayer(l_in, num_units=100,
...                               W=lasagne.init.Normal(0.01))





The weight matrix W of this dense layer will be initialized using samples
from a normal distribution with standard deviation 0.01 (see lasagne.init
for more information).

There are several ways to manually initialize parameters:


	
	Theano shared variable

	If a shared variable instance is provided, this is used unchanged as the
parameter variable. For example:

>>> import theano
>>> import numpy as np
>>> W = theano.shared(np.random.normal(0, 0.01, (50, 100)))
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, W=W)











	
	numpy array

	If a numpy array is provided, a shared variable is created and initialized
using the array. For example:

>>> W_init = np.random.normal(0, 0.01, (50, 100))
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, W=W_init)











	
	callable

	If a callable is provided (e.g. a function or a
lasagne.init.Initializer instance), a shared variable is created
and the callable is called with the desired shape to generate suitable
initial parameter values. The variable is then initialized with those
values. For example:

>>> l = lasagne.layers.DenseLayer(l_in, num_units=100,
...                               W=lasagne.init.Normal(0.01))





Or, using a custom initialization function:

>>> def init_W(shape):
...     return np.random.normal(0, 0.01, shape)
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, W=init_W)













Some types of parameter variables can also be set to None at initialization
(e.g. biases). In that case, the parameter variable will be omitted.
For example, creating a dense layer without biases is done as follows:

>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, b=None)








Parameter sharing

Parameter sharing between multiple layers can be achieved by using the
same Theano shared variable instance for their parameters. For example:

>>> l1 = lasagne.layers.DenseLayer(l_in, num_units=100)
>>> l2 = lasagne.layers.DenseLayer(l_in, num_units=100, W=l1.W)





These two layers will now share weights (but have separate biases).




Propagating data through layers

To compute an expression for the output of a single layer given its input, the
get_output_for() method can be used. To compute the output of a network, you
should instead call lasagne.layers.get_output() on it. This will
traverse the network graph.

You can call this function with the layer you want to compute the output
expression for:

>>> y = lasagne.layers.get_output(l_out)





In that case, a Theano expression will be returned that represents the output
in function of the input variables associated with the
lasagne.layers.InputLayer instance (or instances) in the network,
so given the example network from before, you could compile a Theano function
to compute its output given an input as follows:

>>> f = theano.function([l_in.input_var], lasagne.layers.get_output(l_out))





You can also specify a Theano expression to use as input as a second argument
to lasagne.layers.get_output():

>>> x = T.matrix('x')
>>> y = lasagne.layers.get_output(l_out, x)
>>> f = theano.function([x], y)





This only works when there is only a single InputLayer in the network.
If there is more than one, you can specify input expressions in a dictionary.
For example, in a network with two input layers l_in1 and l_in2 and an
output layer l_out:

>>> x1 = T.matrix('x1')
>>> x2 = T.matrix('x2')
>>> y = lasagne.layers.get_output(l_out, { l_in1: x1, l_in2: x2 })





Any keyword arguments passed to get_output() are propagated to all layers.
This makes it possible to control the behavior of the entire network. The
main use case for this is the deterministic keyword argument, which
disables stochastic behaviour such as dropout when set to True. This is
useful because a deterministic output is desirable at evaluation time.

>>> y = lasagne.layers.get_output(l_out, deterministic=True)





Some networks may have multiple output layers - or you may just want to
compute output expressions for intermediate layers in the network. In that
case, you can pass a list of layers. For example, in a network with two output
layers l_out1 and l_out2:

>>> y1, y2 = lasagne.layers.get_output([l_out1, l_out2])





You could also just call lasagne.layers.get_output() twice:

>>> y1 = lasagne.layers.get_output(l_out1)
>>> y2 = lasagne.layers.get_output(l_out2)





However, this is not recommended! Some network layers may have
non-deterministic output, such as dropout layers. If you compute the network
output expressions with separate calls to lasagne.layers.get_output(),
they will not use the same samples. Furthermore, this may lead to unnecessary
computation because Theano is not always able to merge identical computations
properly. Calling get_output() only once prevents both of these issues.
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Creating custom layers


A simple layer

To implement a custom layer in Lasagne, you will have to write a Python class
that subclasses Layer and implement at least one method:
get_output_for(). This method computes the output of the layer given its
input. Note that both the output and the input are Theano expressions, so they
are symbolic.

The following is an example implementation of a layer that multiplies its input
by 2:

class DoubleLayer(lasagne.layers.Layer):
    def get_output_for(self, input, **kwargs):
        return 2 * input





This is all that’s required to implement a functioning custom layer class in
Lasagne.




A layer that changes the shape

If the layer does not change the shape of the data (for example because it
applies an elementwise operation), then implementing only this one method is
sufficient. Lasagne will assume that the output of the layer has the same shape
as its input.

However, if the operation performed by the layer changes the shape of the data,
you also need to implement get_output_shape_for(). This method computes the
shape of the layer output given the shape of its input. Note that this shape
computation should result in a tuple of integers, so it is not symbolic.

This method exists because Lasagne needs a way to propagate shape information
when a network is defined, so it can determine what sizes the parameter tensors
should be, for example. This mechanism allows each layer to obtain the size of
its input from the previous layer, which means you don’t have to specify the
input size manually. This also prevents errors stemming from inconsistencies
between the layers’ expected and actual shapes.

We can implement a layer that computes the sum across the trailing axis of its
input as follows:

class SumLayer(lasagne.layers.Layer):
    def get_output_for(self, input, **kwargs):
        return input.sum(axis=-1)

    def get_output_shape_for(self, input_shape):
        return input_shape[:-1]





It is important that the shape computation is correct, as this shape
information may be used to initialize other layers in the network.




A layer with parameters

If the layer has parameters, these should be initialized in the constructor.
In Lasagne, parameters are represented by Theano shared variables. A method
is provided to create and register parameter variables:
lasagne.layers.Layer.add_param().

To show how this can be used, here is a layer that multiplies its input
by a matrix W (much like a typical fully connected layer in a neural
network would). This matrix is a parameter of the layer. The shape of the
matrix will be (num_inputs, num_units), where num_inputs is the
number of input features and num_units has to be specified when the layer
is created.

class DotLayer(lasagne.layers.Layer):
    def __init__(self, incoming, num_units, W=lasagne.init.Normal(0.01), **kwargs):
        super(DotLayer, self).__init__(incoming, **kwargs)
        num_inputs = self.input_shape[1]
        self.num_units = num_units
        self.W = self.add_param(W, (num_inputs, num_units), name='W')

    def get_output_for(self, input, **kwargs):
        return T.dot(input, self.W)

    def get_output_shape_for(self, input_shape):
        return (input_shape[0], self.num_units)





A few things are worth noting here: when overriding the constructor, we need
to call the superclass constructor on the first line. This is important to
ensure the layer functions properly.
Note that we pass **kwargs - although this is not strictly necessary, it
enables some other cool Lasagne features, such as making it possible to give
the layer a name:

>>> l_dot = DotLayer(l_in, num_units=50, name='my_dot_layer')





The call to self.add_param() creates the Theano shared variable
representing the parameter, and registers it so it can later be retrieved using
lasagne.layers.Layer.get_params(). It returns the created variable,
which we tuck away in self.W for easy access.

Note that we’ve also made it possible to specify a custom initialization
strategy for W by adding a constructor argument for it, e.g.:

>>> l_dot = DotLayer(l_in, num_units=50, W=lasagne.init.Constant(0.0))





This ‘Lasagne idiom’ of tucking away a created parameter variable in an
attribute for easy access and adding a constructor argument with the same name
to specify the initialization strategy is very common throughout the library.

Finally, note that we used self.input_shape to determine the shape of the
parameter matrix. This property is available in all Lasagne layers, once the
superclass constructor has been called.




A layer with multiple behaviors

Some layers can have multiple behaviors. For example, a layer implementing
dropout should be able to be switched on or off. During training, we want it
to apply dropout noise to its input and scale up the remaining values, but
during evaluation we don’t want it to do anything.

For this purpose, the get_output_for() method takes optional keyword
arguments (kwargs). When get_output() is called to compute an expression
for the output of a network, all specified keyword arguments are passed to the
get_output_for() methods of all layers in the network.

For layers that add noise for regularization purposes, such as dropout, the
convention in Lasagne is to use the keyword argument deterministic to
control its behavior.

Lasagne’s lasagne.layers.DropoutLayer looks roughly like this
(simplified implementation for illustration purposes):

from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
_srng = RandomStreams()

class DropoutLayer(Layer):
    def __init__(self, incoming, p=0.5, **kwargs):
        super(DropoutLayer, self).__init__(incoming, **kwargs)
        self.p = p

    def get_output_for(self, input, deterministic=False, **kwargs):
        if deterministic:  # do nothing in the deterministic case
            return input
        else:  # add dropout noise otherwise
            retain_prob = 1 - self.p
            input /= retain_prob
            return input * _srng.binomial(input.shape, p=retain_prob,
                                          dtype=theano.config.floatX)
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Development

The Lasagne project was started by Sander Dieleman in September 2014. It is
developed by a core team of eight people (in alphabetical order:
Eric Battenberg [http://ericbattenberg.com/],
Sander Dieleman [http://benanne.github.io],
Daniel Nouri [http://danielnouri.org],
Eben Olson [https://github.com/ebenolson],
Aäron van den Oord [https://twitter.com/avdnoord],
Colin Raffel [http://colinraffel.com/],
Jan Schlüter [http://www.ofai.at/~jan.schlueter/],
Søren Kaae Sønderby [http://www1.bio.ku.dk/english/staff/?pure=en/persons/418078])
and numerous additional contributors [https://github.com/Lasagne/Lasagne/graphs/contributors] on GitHub:
https://github.com/Lasagne/Lasagne

As an open-source project by researchers for researchers, we highly welcome
contributions! Every bit helps and will be credited.


Philosophy

Lasagne grew out of a need to combine the flexibility of Theano with the availability of the right building blocks for training neural networks. Its development is guided by a number of design goals:


	Simplicity: Be easy to use, easy to understand and easy to extend, to
facilitate use in research. Interfaces should be kept small, with as few
classes and methods as possible. Every added abstraction and feature should
be carefully scrutinized, to determine whether the added complexity is
justified.

	Transparency: Do not hide Theano behind abstractions, directly process
and return Theano expressions or Python / numpy data types. Try to rely on
Theano’s functionality where possible, and follow Theano’s conventions.

	Modularity: Allow all parts (layers, regularizers, optimizers, ...) to be
used independently of Lasagne. Make it easy to use components in isolation or
in conjunction with other frameworks.

	Pragmatism: Make common use cases easy, do not overrate uncommon cases.
Ideally, everything should be possible, but common use cases shouldn’t be
made more difficult just to cater for exotic ones.

	Restraint: Do not obstruct users with features they decide not to use.
Both in using and in extending components, it should be possible for users to
be fully oblivious to features they do not need.

	Focus: “Do one thing and do it well”. Do not try to provide a library for
everything to do with deep learning.






What to contribute


Give feedback

To send us general feedback, questions or ideas for improvement, please post on
our mailing list [https://groups.google.com/forum/#!forum/lasagne-users].

If you have a very concrete feature proposal, add it to the issue tracker on
GitHub [https://github.com/Lasagne/Lasagne/issues]:


	Explain how it would work, and link to a scientific paper if applicable.

	Keep the scope as narrow as possible, to make it easier to implement.






Report bugs

Report bugs at the issue tracker on GitHub [https://github.com/Lasagne/Lasagne/issues].
If you are reporting a bug, please include:


	your Lasagne and Theano version.

	steps to reproduce the bug, ideally reduced to a few Python commands.

	the results you obtain, and the results you expected instead.



If you are unsure whether the behavior you experience is a bug, or if you are
unsure whether it is related to Lasagne or Theano, please just ask on our
mailing list [https://groups.google.com/forum/#!forum/lasagne-users] first.




Fix bugs

Look through the GitHub issues for bug reports. Anything tagged with “bug” is
open to whoever wants to implement it. If you discover a bug in Lasagne you can
fix yourself, by all means feel free to just implement a fix and not report it
first.




Implement features

Look through the GitHub issues for feature proposals. Anything tagged with
“feature” or “enhancement” is open to whoever wants to implement it. If you
have a feature in mind you want to implement yourself, please note that Lasagne
has a fairly narrow focus and we strictly follow a set of design
principles, so we cannot guarantee upfront that your code
will be included. Please do not hesitate to just propose your idea in a GitHub
issue or on the mailing list first, so we can discuss it and/or guide you
through the implementation.




Write documentation

Whenever you find something not explained well, misleading, glossed over or
just wrong, please update it! The Edit on GitHub link on the top right of
every documentation page and the [source] link for every documented entity
in the API reference will help you to quickly locate the origin of any text.






How to contribute


Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit
on GitHub link on the top right of a documentation page or the [source] link
of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser
and send us a Pull Request. All you need for this is a free GitHub account.

For any more substantial changes, please follow the steps below to setup
Lasagne for development.




Development setup

First, follow the instructions for performing a development installation of
Lasagne (including forking on GitHub): Development installation

To be able to run the tests and build the documentation locally, install
additional requirements with: pip install -r requirements-dev.txt (adding
--user if you want to install to your home directory instead).

If you use the bleeding-edge version of Theano, then instead of running that
command, just use pip install to manually install all dependencies listed
in requirements-dev.txt with their correct versions; otherwise it will
attempt to downgrade Theano to the known good version in requirements.txt.




Documentation

The documentation is generated with Sphinx [http://sphinx-doc.org/latest/index.html]. To build it locally, run the
following commands:

cd docs
make html





Afterwards, open docs/_build/html/index.html to view the documentation as
it would appear on readthedocs [http://lasagne.readthedocs.org/]. If you
changed a lot and seem to get misleading error messages or warnings, run
make clean html to force Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to
ensure consistency throughout the library. For additional information on the
syntax and conventions used, please refer to the following documents:


	reStructuredText Primer [http://sphinx-doc.org/rest.html]

	Sphinx reST markup constructs [http://sphinx-doc.org/markup/index.html]

	A Guide to NumPy/SciPy Documentation [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]






Testing

Lasagne has a code coverage of 100%, which has proven very helpful in the past,
but also creates some duties:


	Whenever you change any code, you should test whether it breaks existing
features by just running the test suite. The test suite will also be run by
Travis [https://travis-ci.org/] for any Pull Request to Lasagne.

	Any code you add needs to be accompanied by tests ensuring that nobody else
breaks it in future. Coveralls [https://coveralls.io/] will check whether
the code coverage stays at 100% for any Pull Request to Lasagne.

	Every bug you fix indicates a missing test case, so a proposed bug fix should
come with a new test that fails without your fix.



To run the full test suite, just do

py.test





Testing will take over 5 minutes for the first run, but less than a minute for
subsequent runs when Theano can reuse compiled code. It will end with a code
coverage report specifying which code lines are not covered by tests, if any.
Furthermore, it will list any failed tests, and failed PEP8 [https://www.python.org/dev/peps/pep-0008/] checks.

To only run tests matching a certain name pattern, use the -k command line
switch, e.g., -k pool will run the pooling layer tests only.

To land in a pdb debug prompt on a failure to inspect it more closely, use
the --pdb switch.

Finally, for a loop-on-failing mode, do pip install pytest-xdist and run
py.test -f. This will pause after the run, wait for any source file to
change and run all previously failing tests again.




Sending Pull Requests

When you’re satisfied with your addition, the tests pass and the documentation
looks good without any markup errors, commit your changes to a new branch, push
that branch to your fork and send us a Pull Request via GitHub’s web interface.

All these steps are nicely explained on GitHub:
https://guides.github.com/introduction/flow/

When filing your Pull Request, please include a description of what it does, to
help us reviewing it. If it is fixing an open issue, say, issue #123, add
Fixes #123, Resolves #123 or Closes #123 to the description text, so
GitHub will close it when your request is merged.
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lasagne.layers




Helper functions







	get_output
	Computes the output of the network at one or more given layers.


	get_output_shape
	Computes the output shape of the network at one or more given layers.


	get_all_layers
	This function gathers all layers below one or more given Layer instances, including the given layer(s).


	get_all_params
	This function gathers all parameters of all layers below one or more given Layer instances, including the layer(s) itself.


	count_params
	This function counts all parameters (i.e., the number of scalar values) of all layers below one or more given Layer instances, including the layer(s) itself.


	get_all_param_values
	This function returns the values of the parameters of all layers below one or more given Layer instances, including the layer(s) itself.


	set_all_param_values
	Given a list of numpy arrays, this function sets the parameters of all layers below one or more given Layer instances (including the layer(s) itself) to the given values.





Layer base classes







	Layer
	The Layer class represents a single layer of a neural network.


	MergeLayer
	This class represents a layer that aggregates input from multiple layers.





Network input







	InputLayer
	This layer holds a symbolic variable that represents a network input.





Dense layers







	DenseLayer
	A fully connected layer.


	NonlinearityLayer
	A layer that just applies a nonlinearity.


	NINLayer
	Network-in-network layer.





Convolutional layers







	Conv1DLayer
	1D convolutional layer


	Conv2DLayer
	2D convolutional layer





Pooling layers







	MaxPool1DLayer
	1D max-pooling layer


	MaxPool2DLayer
	2D max-pooling layer


	Pool2DLayer
	2D pooling layer


	GlobalPoolLayer
	Global pooling layer


	FeaturePoolLayer
	Feature pooling layer


	FeatureWTALayer
	‘Winner Take All’ layer





Recurrent layers







	CustomRecurrentLayer
	A layer which implements a recurrent connection.


	RecurrentLayer
	Dense recurrent neural network (RNN) layer


	LSTMLayer
	A long short-term memory (LSTM) layer.


	GRULayer
	Gated Recurrent Unit (GRU) Layer


	Gate
	Simple class to hold the parameters for a gate connection.





Noise layers







	DropoutLayer
	Dropout layer


	dropout
	alias of DropoutLayer


	GaussianNoiseLayer
	Gaussian noise layer.





Shape layers







	ReshapeLayer
	A layer reshaping its input tensor to another tensor of the same total number of elements.


	reshape
	alias of ReshapeLayer


	FlattenLayer
	A layer that flattens its input.


	flatten
	alias of FlattenLayer


	DimshuffleLayer
	A layer that rearranges the dimension of its input tensor, maintaining the same same total number of elements.


	dimshuffle
	alias of DimshuffleLayer


	PadLayer
	Pad all dimensions except the first batch_ndim with width zeros on both sides, or with another value specified in val.


	pad
	alias of PadLayer


	SliceLayer
	Slices the input at a specific axis and at specific indices.





Merge layers







	ConcatLayer
	Concatenates multiple inputs along the specified axis.


	concat
	alias of ConcatLayer


	ElemwiseMergeLayer
	This layer performs an elementwise merge of its input layers.


	ElemwiseSumLayer
	This layer performs an elementwise sum of its input layers.





Embedding layers







	EmbeddingLayer
	A layer for word embeddings.





lasagne.layers.corrmm







	corrmm.Conv2DMMLayer
	2D convolutional layer





lasagne.layers.cuda_convnet







	cuda_convnet.Conv2DCCLayer
	2D convolutional layer


	cuda_convnet.MaxPool2DCCLayer
	2D max-pooling layer


	cuda_convnet.ShuffleBC01ToC01BLayer
	shuffle 4D input from bc01 (batch-size-first) order to c01b


	cuda_convnet.bc01_to_c01b
	alias of ShuffleBC01ToC01BLayer


	cuda_convnet.ShuffleC01BToBC01Layer
	shuffle 4D input from c01b (batch-size-last) order to bc01


	cuda_convnet.c01b_to_bc01
	alias of ShuffleC01BToBC01Layer


	cuda_convnet.NINLayer_c01b
	Network-in-network layer with c01b axis ordering.





lasagne.layers.dnn







	dnn.Conv2DDNNLayer
	2D convolutional layer


	dnn.MaxPool2DDNNLayer
	2D max-pooling layer


	dnn.Pool2DDNNLayer
	2D pooling layer
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Helper functions


	
lasagne.layers.get_output(layer_or_layers, inputs=None, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/helper.py#L108-L190]

	Computes the output of the network at one or more given layers.
Optionally, you can define the input(s) to propagate through the network
instead of using the input variable(s) associated with the network’s
input layer(s).





	Parameters:	layer_or_layers : Layer or list


the Layer instance for which to compute the output
expressions, or a list of Layer instances.




inputs : None, Theano expression, numpy array, or dict


If None, uses the input variables associated with the
InputLayer instances.
If a Theano expression, this defines the input for a single
InputLayer instance. Will throw a ValueError if there
are multiple InputLayer instances.
If a numpy array, this will be wrapped as a Theano constant
and used just like a Theano expression.
If a dictionary, any Layer instance (including the
input layers) can be mapped to a Theano expression or numpy
array to use instead of its regular output.







	Returns:	output : Theano expression or list


the output of the given layer(s) for the given network input










Notes

Depending on your network architecture, get_output([l1, l2]) may
be crucially different from [get_output(l1), get_output(l2)]. Only
the former ensures that the output expressions depend on the same
intermediate expressions. For example, when l1 and l2 depend on
a common dropout layer, the former will use the same dropout mask for
both, while the latter will use two different dropout masks.






	
lasagne.layers.get_output_shape(layer_or_layers, input_shapes=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/helper.py#L193-L263]

	Computes the output shape of the network at one or more given layers.





	Parameters:	layer_or_layers : Layer or list


the Layer instance for which to compute the output
shapes, or a list of Layer instances.




input_shapes : None, tuple, or dict


If None, uses the input shapes associated with the
InputLayer instances.
If a tuple, this defines the input shape for a single
InputLayer instance. Will throw a ValueError if there
are multiple InputLayer instances.
If a dictionary, any Layer instance (including the
input layers) can be mapped to a shape tuple to use instead of
its regular output shape.







	Returns:	tuple or list


the output shape of the given layer(s) for the given network input















	
lasagne.layers.get_all_layers(layer, treat_as_input=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/helper.py#L20-L105]

	This function gathers all layers below one or more given Layer
instances, including the given layer(s). Its main use is to collect all
layers of a network just given the output layer(s). The layers are
guaranteed to be returned in a topological order: a layer in the result
list is always preceded by all layers its input depends on.





	Parameters:	layer : Layer or list


the Layer instance for which to gather all layers feeding
into it, or a list of Layer instances.




treat_as_input : None or iterable


an iterable of Layer instances to treat as input layers
with no layers feeding into them. They will show up in the result
list, but their incoming layers will not be collected (unless they
are required for other layers as well).







	Returns:	list


a list of Layer instances feeding into the given
instance(s) either directly or indirectly, and the given
instance(s) themselves, in topological order.










Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> get_all_layers(l1) == [l_in, l1]
True
>>> l2 = DenseLayer(l_in, num_units=10)
>>> get_all_layers([l2, l1]) == [l_in, l2, l1]
True
>>> get_all_layers([l1, l2]) == [l_in, l1, l2]
True
>>> l3 = DenseLayer(l2, num_units=20)
>>> get_all_layers(l3) == [l_in, l2, l3]
True
>>> get_all_layers(l3, treat_as_input=[l2]) == [l2, l3]
True










	
lasagne.layers.get_all_params(layer, **tags)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/helper.py#L266-L308]

	This function gathers all parameters of all layers below one or
more given Layer instances, including the layer(s) itself. Its
main use is to collect all parameters of a network just given the output
layer(s).

By default, all parameters that participate in the forward pass will be
returned. The list can optionally be filtered by specifying tags as keyword
arguments. For example, trainable=True will only return trainable
parameters, and regularizable=True will only return parameters that can
be regularized (e.g., by L2 decay).





	Parameters:	layer : Layer or list


The Layer instance for which to gather all parameters, or a
list of Layer instances.




**tags (optional)


tags can be specified to filter the list. Specifying tag1=True
will limit the list to parameters that are tagged with tag1.
Specifying tag1=False will limit the list to parameters that
are not tagged with tag1. Commonly used tags are
regularizable and trainable.







	Returns:	params : list


A list of Theano shared variables representing the parameters.










Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> all_params = get_all_params(l1)
>>> all_params == [l1.W, l1.b]
True










	
lasagne.layers.count_params(layer, **tags)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/helper.py#L311-L354]

	This function counts all parameters (i.e., the number of scalar
values) of all layers below one or more given Layer instances,
including the layer(s) itself.

This is useful to compare the capacity of various network architectures.
All parameters returned by the Layer`s' `get_params methods are
counted.





	Parameters:	layer : Layer or list


The Layer instance for which to count the parameters, or a
list of Layer instances.




**tags (optional)


tags can be specified to filter the list of parameter variables that
will be included in the count. Specifying tag1=True
will limit the list to parameters that are tagged with tag1.
Specifying tag1=False will limit the list to parameters that
are not tagged with tag1. Commonly used tags are
regularizable and trainable.







	Returns:	int


The total number of learnable parameters.










Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> param_count = count_params(l1)
>>> param_count
1050
>>> param_count == 20 * 50 + 50  # 20 input * 50 units + 50 biases
True










	
lasagne.layers.get_all_param_values(layer, **tags)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/helper.py#L357-L395]

	This function returns the values of the parameters of all layers below one
or more given Layer instances, including the layer(s) itself.

This function can be used in conjunction with set_all_param_values to save
and restore model parameters.





	Parameters:	layer : Layer or list


The Layer instance for which to gather all parameter values,
or a list of Layer instances.




**tags (optional)


tags can be specified to filter the list. Specifying tag1=True
will limit the list to parameters that are tagged with tag1.
Specifying tag1=False will limit the list to parameters that
are not tagged with tag1. Commonly used tags are
regularizable and trainable.







	Returns:	list of numpy.array


A list of numpy arrays representing the parameter values.










Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> all_param_values = get_all_param_values(l1)
>>> (all_param_values[0] == l1.W.get_value()).all()
True
>>> (all_param_values[1] == l1.b.get_value()).all()
True










	
lasagne.layers.set_all_param_values(layer, values, **tags)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/helper.py#L398-L454]

	Given a list of numpy arrays, this function sets the parameters of all
layers below one or more given Layer instances (including the
layer(s) itself) to the given values.

This function can be used in conjunction with get_all_param_values to save
and restore model parameters.





	Parameters:	layer : Layer or list


The Layer instance for which to set all parameter values, or a
list of Layer instances.




values : list of numpy.array


A list of numpy arrays representing the parameter values, must match
the number of parameters.
Every parameter’s shape must match the shape of its new value.




**tags (optional)


tags can be specified to filter the list of parameters to be set.
Specifying tag1=True will limit the list to parameters that are
tagged with tag1.
Specifying tag1=False will limit the list to parameters that
are not tagged with tag1. Commonly used tags are
regularizable and trainable.







	Raises:	ValueError


If the number of values is not equal to the number of params, or
if a parameter’s shape does not match the shape of its new value.










Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> all_param_values = get_all_param_values(l1)
>>> # all_param_values is now [l1.W.get_value(), l1.b.get_value()]
>>> # ...
>>> set_all_param_values(l1, all_param_values)
>>> # the parameter values are restored.
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Layer base classes


	
class lasagne.layers.Layer(incoming, name=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L14-L219]

	The Layer class represents a single layer of a neural network. It
should be subclassed when implementing new types of layers.

Because each layer can keep track of the layer(s) feeding into it, a
network’s output Layer instance can double as a handle to the full
network.


	
add_param(spec, shape, name=None, **tags)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L153-L219]

	Register and initialize a Theano shared variable containing parameters
associated with the layer.

When defining a new layer, this method can be used in the constructor
to define which parameters the layer has, what their shapes are, how
they should be initialized and what tags are associated with them.

All parameter variables associated with the layer can be retrieved
using Layer.get_params().





	Parameters:	spec : Theano shared variable, numpy array or callable


an initializer for this parameter variable. This should initialize
the variable with an array of the specified shape. See
lasagne.utils.create_param() for more information.




shape : tuple of int


a tuple of integers representing the desired shape of the
parameter array.




name : str (optional)


the name of the parameter variable. This will be passed to
theano.shared when the variable is created. If spec is
already a shared variable, this parameter will be ignored to avoid
overwriting an existing name. If the layer itself has a name,
the name of the parameter variable will be prefixed with it and it
will be of the form ‘layer_name.param_name’.




**tags (optional)


tags associated with the parameter variable can be specified as
keyword arguments.

To associate the tag tag1 with the variable, pass
tag1=True.

By default, the tags regularizable and trainable are
associated with the parameter variable. Pass
regularizable=False or trainable=False respectively to
prevent this.







	Returns:	Theano shared variable


the resulting parameter variable










Notes

It is recommend to assign the resulting parameter variable to an
attribute of the layer, so it can be accessed easily, for example:

>>> self.W = self.add_param(W, (2, 3), name='W')  










	
get_output_for(input, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L128-L151]

	Propagates the given input through this layer (and only this layer).





	Parameters:	input : Theano expression


The expression to propagate through this layer.







	Returns:	output : Theano expression


The output of this layer given the input to this layer.










Notes

This is called by the base lasagne.layers.get_output()
to propagate data through a network.

This method should be overridden when implementing a new
Layer class. By default it raises NotImplementedError.






	
get_output_shape_for(input_shape)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L100-L126]

	Computes the output shape of this layer, given an input shape.





	Parameters:	input_shape : tuple


A tuple representing the shape of the input. The tuple should have
as many elements as there are input dimensions, and the elements
should be integers or None.







	Returns:	tuple


A tuple representing the shape of the output of this layer. The
tuple has as many elements as there are output dimensions, and the
elements are all either integers or None.










Notes

This method will typically be overridden when implementing a new
Layer class. By default it simply returns the input
shape. This means that a layer that does not modify the shape
(e.g. because it applies an elementwise operation) does not need
to override this method.






	
get_params(**tags)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L54-L98]

	Returns a list of all the Theano variables that parameterize the layer.

By default, all parameters that participate in the forward pass will be
returned (in the order they were registered in the Layer’s constructor
via add_param()). The list can optionally be filtered by
specifying tags as keyword arguments. For example, trainable=True
will only return trainable parameters, and regularizable=True
will only return parameters that can be regularized (e.g., by L2
decay).





	Parameters:	**tags (optional)


tags can be specified to filter the list. Specifying tag1=True
will limit the list to parameters that are tagged with tag1.
Specifying tag1=False will limit the list to parameters that
are not tagged with tag1. Commonly used tags are
regularizable and trainable.







	Returns:	list of Theano shared variables


A list of variables that parameterize the layer










Notes

For layers without any parameters, this will return an empty list.










	
class lasagne.layers.MergeLayer(incomings, name=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L222-L302]

	This class represents a layer that aggregates input from multiple layers.
It should be subclassed when implementing new types of layers that obtain
their input from multiple layers.


	
get_output_for(inputs, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L279-L302]

	Propagates the given inputs through this layer (and only this layer).





	Parameters:	inputs : list of Theano expressions


The Theano expressions to propagate through this layer.







	Returns:	Theano expressions


The output of this layer given the inputs to this layer.










Notes

This is called by the base lasagne.layers.get_output()
to propagate data through a network.

This method should be overridden when implementing a new
Layer class with multiple inputs. By default it raises
NotImplementedError.






	
get_output_shape_for(input_shapes)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/base.py#L252-L277]

	Computes the output shape of this layer, given a list of input shapes.





	Parameters:	input_shape : list of tuple


A list of tuples, with each tuple representing the shape of one of
the inputs (in the correct order). These tuples should have as many
elements as there are input dimensions, and the elements should be
integers or None.







	Returns:	tuple


A tuple representing the shape of the output of this layer. The
tuple has as many elements as there are output dimensions, and the
elements are all either integers or None.










Notes

This method must be overridden when implementing a new
Layer class with multiple inputs. By default it raises
NotImplementedError.
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Network input


	
class lasagne.layers.InputLayer(shape, input_var=None, name=None, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/input.py#L16-L69]

	This layer holds a symbolic variable that represents a network input. A
variable can be specified when the layer is instantiated, else it is
created.





	Parameters:	shape : tuple of int or None elements


The shape of the input. Any element can be None to indicate that the
size of that dimension is not fixed at compile time.




input_var : Theano symbolic variable or None (default: None)


A variable representing a network input. If it is not provided, a
variable will be created.







	Raises:	ValueError


If the dimension of input_var is not equal to len(shape)










Notes

The first dimension usually indicates the batch size. If you specify it,
Theano may apply more optimizations while compiling the training or
prediction function, but the compiled function will not accept data of a
different batch size at runtime. To compile for a variable batch size, set
the first shape element to None instead.

Examples

>>> from lasagne.layers import InputLayer
>>> l_in = InputLayer((100, 20))
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Dense layers


	
class lasagne.layers.DenseLayer(incoming, num_units, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/dense.py#L17-L91]

	A fully connected layer.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape




num_units : int


The number of units of the layer




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. If a shared variable or a
numpy array is provided the shape should  be (num_inputs, num_units).
See Layer.create_param() for more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If a shared variable or a
numpy array is provided the shape should be (num_units,).
If None is provided the layer will have no biases.
See Layer.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.










Notes

If the input to this layer has more than two axes, it will flatten the
trailing axes. This is useful for when a dense layer follows a
convolutional layer, for example. It is not necessary to insert a
FlattenLayer in this case.

Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)










	
class lasagne.layers.NonlinearityLayer(incoming, nonlinearity=lasagne.nonlinearities.rectify, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/dense.py#L94-L117]

	A layer that just applies a nonlinearity.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.















	
class lasagne.layers.NINLayer(incoming, num_units, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/dense.py#L120-L220]

	Network-in-network layer.
Like DenseLayer, but broadcasting across all trailing dimensions beyond the
2nd.  This results in a convolution operation with filter size 1 on all
trailing dimensions.  Any number of trailing dimensions is supported,
so NINLayer can be used to implement 1D, 2D, 3D, ... convolutions.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape




num_units : int


The number of units of the layer




untie_biases : bool


If false the network has a single bias vector similar to a dense
layer. If true a separate bias vector is used for each trailing
dimension beyond the 2nd.




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. If a shared variable or a
numpy array is provided the shape should be (num_inputs, num_units),
where num_units is the size of the 2nd. dimension of the input.
See lasagne.utils.create_param() for more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If a shared variable or a
numpy array is provided the correct shape is determined by the
untie_biases setting. If untie_biases is False, then the shape should
be (num_units, ). If untie_biases is True then the shape should be
(num_units, input_dim[2], ..., input_dim[-1]). If None is provided the
layer will have no biases.
See lasagne.utils.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.










References




	[R14]	Lin, Min, Qiang Chen, and Shuicheng Yan (2013):
Network in network. arXiv preprint arXiv:1312.4400.




Examples

>>> from lasagne.layers import InputLayer, NINLayer
>>> l_in = InputLayer((100, 20, 10, 3))
>>> l1 = NINLayer(l_in, num_units=5)
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Convolutional layers


	
class lasagne.layers.Conv1DLayer(incoming, num_filters, filter_size, stride=1, pad=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, convolution=lasagne.theano_extensions.conv.conv1d_mc0, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/conv.py#L83-L281]

	1D convolutional layer

Performs a 1D convolution on its input and optionally adds a bias and
applies an elementwise nonlinearity.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape. The
output of this layer should be a 3D tensor, with shape
(batch_size, num_input_channels, input_length).




num_filters : int


The number of learnable convolutional filters this layer has.




filter_size : int or iterable of int


An integer or a 1-element tuple specifying the size of the filters.




stride : int or iterable of int


An integer or a 1-element tuple specifying the stride of the
convolution operation.




pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)


By default, the convolution is only computed where the input and the
filter fully overlap (a valid convolution). When stride=1, this
yields an output that is smaller than the input by filter_size - 1.
The pad argument allows you to implicitly pad the input with zeros,
extending the output size.

An integer or a 1-element tuple results in symmetric zero-padding of
the given size on both borders.

'full' pads with one less than the filter size on both sides. This
is equivalent to computing the convolution wherever the input and the
filter overlap by at least one position.

'same' pads with half the filter size on both sides (one less on
the second side for an even filter size). When stride=1, this
results in an output size equal to the input size.

'valid' is an alias for 0 (no padding / a valid convolution).




untie_biases : bool (default: False)


If False, the layer will have a bias parameter for each channel,
which is shared across all positions in this channel. As a result, the
b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each
position in each channel. As a result, the b attribute will be a
matrix (2D).




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. This should initialize the
layer weights to a 3D array with shape
(num_filters, num_input_channels, filter_length).
See lasagne.utils.create_param() for more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If None is provided, the
layer will have no biases. This should initialize the layer biases to
a 1D array with shape (num_filters,) if untied_biases is set to
False. If it is set to True, its shape should be
(num_filters, input_length) instead.
See lasagne.utils.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.




convolution : callable


The convolution implementation to use. The
lasagne.theano_extensions.conv module provides some alternative
implementations for 1D convolutions, because the Theano API only
features a 2D convolution implementation. Usually it should be fine
to leave this at the default value.




**kwargs


Any additional keyword arguments are passed to the Layer superclass.










Notes

Theano’s underlying convolution (theano.tensor.nnet.conv.conv2d())
only supports pad=0 and pad='full'. This layer emulates other modes
by cropping a full convolution or explicitly padding the input with zeros.

Attributes







	W
	(Theano shared variable) Variable representing the filter weights.


	b
	(Theano shared variable) Variable representing the biases.






	
get_W_shape()[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/conv.py#L218-L227]

	Get the shape of the weight matrix W.





	Returns:	tuple of int


The shape of the weight matrix.



















	
class lasagne.layers.Conv2DLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, convolution=theano.tensor.nnet.conv2d, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/conv.py#L284-L498]

	2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and
applies an elementwise nonlinearity.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape. The
output of this layer should be a 4D tensor, with shape
(batch_size, num_input_channels, input_rows, input_columns).




num_filters : int


The number of learnable convolutional filters this layer has.




filter_size : int or iterable of int


An integer or a 2-element tuple specifying the size of the filters.




stride : int or iterable of int


An integer or a 2-element tuple specifying the stride of the
convolution operation.




pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)


By default, the convolution is only computed where the input and the
filter fully overlap (a valid convolution). When stride=1, this
yields an output that is smaller than the input by filter_size - 1.
The pad argument allows you to implicitly pad the input with zeros,
extending the output size.

A single integer results in symmetric zero-padding of the given size on
all borders, a tuple of two integers allows different symmetric padding
per dimension.

'full' pads with one less than the filter size on both sides. This
is equivalent to computing the convolution wherever the input and the
filter overlap by at least one position.

'same' pads with half the filter size on both sides (one less on
the second side for an even filter size). When stride=1, this
results in an output size equal to the input size.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent
integer values due to optimizations by Theano.




untie_biases : bool (default: False)


If False, the layer will have a bias parameter for each channel,
which is shared across all positions in this channel. As a result, the
b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each
position in each channel. As a result, the b attribute will be a
3D tensor.




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. This should initialize the
layer weights to a 4D array with shape
(num_filters, num_input_channels, filter_rows, filter_columns).
See lasagne.utils.create_param() for more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If None is provided, the
layer will have no biases. This should initialize the layer biases to
a 1D array with shape (num_filters,) if untied_biases is set to
False. If it is set to True, its shape should be
(num_filters, input_rows, input_columns) instead.
See lasagne.utils.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.




convolution : callable


The convolution implementation to use. Usually it should be fine to
leave this at the default value.




**kwargs


Any additional keyword arguments are passed to the Layer superclass.










Notes

Theano’s underlying convolution (theano.tensor.nnet.conv.conv2d())
only supports pad=0 and pad='full'. This layer emulates other modes
by cropping a full convolution or explicitly padding the input with zeros.

Attributes







	W
	(Theano shared variable) Variable representing the filter weights.


	b
	(Theano shared variable) Variable representing the biases.






	
get_W_shape()[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/conv.py#L422-L432]

	Get the shape of the weight matrix W.





	Returns:	tuple of int


The shape of the weight matrix.



















Note

For experts: Conv2DLayer will create a convolutional layer using
T.nnet.conv2d, Theano’s default convolution. On compilation for GPU,
Theano replaces this with a cuDNN [https://developer.nvidia.com/cudnn]-based implementation if available,
otherwise falls back to a gemm-based implementation. For details on this,
please see the Theano convolution documentation [http://deeplearning.net/software/theano/library/tensor/nnet/conv.html].

Lasagne also provides convolutional layers directly enforcing a specific
implementation: lasagne.layers.dnn.Conv2DDNNLayer to enforce
cuDNN, lasagne.layers.corrmm.Conv2DMMLayer to enforce the
gemm-based one, lasagne.layers.cuda_convnet.Conv2DCCLayer for
Krizhevsky’s cuda-convnet [https://code.google.com/p/cuda-convnet/].
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Pooling layers


	
class lasagne.layers.MaxPool1DLayer(incoming, pool_size, stride=None, pad=0, ignore_border=True, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/pool.py#L74-L144]

	1D max-pooling layer

Performs 1D max-pooling over the trailing axis of a 3D input tensor.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_size : integer or iterable


The length of the pooling region. If an iterable, it should have a
single element.




stride : integer, iterable or None


The stride between sucessive pooling regions.
If None then stride == pool_size.




pad : integer or iterable


The number of elements to be added to the input on each side.
Must be less than stride.




ignore_border : bool


If True, partial pooling regions will be ignored.
Must be True if pad != 0.




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.










Notes

The value used to pad the input is chosen to be less than
the minimum of the input, so that the output of each pooling region
always corresponds to some element in the unpadded input region.

Using ignore_border=False prevents Theano from using cuDNN for the
operation, so it will fall back to a slower implementation.






	
class lasagne.layers.MaxPool2DLayer(incoming, pool_size, stride=None, pad=(0, 0), ignore_border=True, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/pool.py#L245-L296]

	2D max-pooling layer

Performs 2D max-pooling over the two trailing axes of a 4D input tensor.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_size : integer or iterable


The length of the pooling region in each dimension.  If an integer, it
is promoted to a square pooling region. If an iterable, it should have
two elements.




stride : integer, iterable or None


The strides between sucessive pooling regions in each dimension.
If None then stride = pool_size.




pad : integer or iterable


Number of elements to be added on each side of the input
in each dimension. Each value must be less than
the corresponding stride.




ignore_border : bool


If True, partial pooling regions will be ignored.
Must be True if pad != (0, 0).




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.










Notes

The value used to pad the input is chosen to be less than
the minimum of the input, so that the output of each pooling region
always corresponds to some element in the unpadded input region.

Using ignore_border=False prevents Theano from using cuDNN for the
operation, so it will fall back to a slower implementation.






	
class lasagne.layers.Pool2DLayer(incoming, pool_size, stride=None, pad=(0, 0), ignore_border=True, mode='max', **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/pool.py#L147-L242]

	2D pooling layer

Performs 2D mean or max-pooling over the two trailing axes
of a 4D input tensor.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_size : integer or iterable


The length of the pooling region in each dimension.  If an integer, it
is promoted to a square pooling region. If an iterable, it should have
two elements.




stride : integer, iterable or None


The strides between sucessive pooling regions in each dimension.
If None then stride = pool_size.




pad : integer or iterable


Number of elements to be added on each side of the input
in each dimension. Each value must be less than
the corresponding stride.




ignore_border : bool


If True, partial pooling regions will be ignored.
Must be True if pad != (0, 0).




mode : {‘max’, ‘average_inc_pad’, ‘average_exc_pad’}


Pooling mode: max-pooling or mean-pooling including/excluding zeros
from partially padded pooling regions. Default is ‘max’.




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.











See also


	MaxPool2DLayer

	Shortcut for max pooling layer.





Notes

The value used to pad the input is chosen to be less than
the minimum of the input, so that the output of each pooling region
always corresponds to some element in the unpadded input region.

Using ignore_border=False prevents Theano from using cuDNN for the
operation, so it will fall back to a slower implementation.






	
class lasagne.layers.GlobalPoolLayer(incoming, pool_function=theano.tensor.mean, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/pool.py#L439-L471]

	Global pooling layer

This layer pools globally across all trailing dimensions beyond the 2nd.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_function : callable


the pooling function to use. This defaults to theano.tensor.mean
(i.e. mean-pooling) and can be replaced by any other aggregation
function.




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.















	
class lasagne.layers.FeaturePoolLayer(incoming, pool_size, axis=1, pool_function=theano.tensor.max, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/pool.py#L302-L370]

	Feature pooling layer

This layer pools across a given axis of the input. By default this is axis
1, which corresponds to the feature axis for DenseLayer,
Conv1DLayer and Conv2DLayer. The layer can be used to
implement maxout.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_size : integer


the size of the pooling regions, i.e. the number of features / feature
maps to be pooled together.




axis : integer


the axis along which to pool. The default value of 1 works
for DenseLayer, Conv1DLayer and Conv2DLayer.




pool_function : callable


the pooling function to use. This defaults to theano.tensor.max
(i.e. max-pooling) and can be replaced by any other aggregation
function.




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.










Notes

This layer requires that the size of the axis along which it pools is a
multiple of the pool size.






	
class lasagne.layers.FeatureWTALayer(incoming, pool_size, axis=1, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/pool.py#L373-L436]

	‘Winner Take All’ layer

This layer performs ‘Winner Take All’ (WTA) across feature maps: zero out
all but the maximal activation value within a region.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_size : integer


the number of feature maps per region.




axis : integer


the axis along which the regions are formed.




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.










Notes

This layer requires that the size of the axis along which it groups units
is a multiple of the pool size.
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Recurrent layers

Layers to construct recurrent networks. Recurrent layers can be used similarly
to feed-forward layers except that the input shape is expected to be
(batch_size, sequence_length, num_inputs).   The CustomRecurrentLayer can
also support more than one “feature” dimension (e.g. using convolutional
connections), but for all other layers, dimensions trailing the third
dimension are flattened.

The following recurrent layers are implemented:







	CustomRecurrentLayer
	A layer which implements a recurrent connection.


	RecurrentLayer
	Dense recurrent neural network (RNN) layer


	LSTMLayer
	A long short-term memory (LSTM) layer.


	GRULayer
	Gated Recurrent Unit (GRU) Layer





For recurrent layers with gates we use a helper class to set up the parameters
in each gate:







	Gate
	Simple class to hold the parameters for a gate connection.





Please refer to that class if you need to modify initial conditions of gates.

Recurrent layers and feed-forward layers can be combined in the same network
by using a few reshape operations; please refer to the example below.


Examples

The following example demonstrates how recurrent layers can be easily mixed
with feed-forward layers using ReshapeLayer and how to build a
network with variable batch size and number of time steps.

>>> from lasagne.layers import *
>>> num_inputs, num_units, num_classes = 10, 12, 5
>>> # By setting the first two dimensions as None, we are allowing them to vary
>>> # They correspond to batch size and sequence length, so we will be able to
>>> # feed in batches of varying size with sequences of varying length.
>>> l_inp = InputLayer((None, None, num_inputs))
>>> # We can retrieve symbolic references to the input variable's shape, which
>>> # we will later use in reshape layers.
>>> batchsize, seqlen, _ = l_inp.input_var.shape
>>> l_lstm = LSTMLayer(l_inp, num_units=num_units)
>>> # In order to connect a recurrent layer to a dense layer, we need to
>>> # flatten the first two dimensions (our "sample dimensions"); this will
>>> # cause each time step of each sequence to be processed independently
>>> l_shp = ReshapeLayer(l_lstm, (-1, num_units))
>>> l_dense = DenseLayer(l_shp, num_units=num_classes)
>>> # To reshape back to our original shape, we can use the symbolic shape
>>> # variables we retrieved above.
>>> l_out = ReshapeLayer(l_dense, (batchsize, seqlen, num_classes))








	
class lasagne.layers.CustomRecurrentLayer(incoming, input_to_hidden, hidden_to_hidden, nonlinearity=lasagne.nonlinearities.rectify, hid_init=lasagne.init.Constant(0.), backwards=False, learn_init=False, gradient_steps=-1, grad_clipping=False, unroll_scan=False, precompute_input=True, mask_input=None, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L81-L460]

	A layer which implements a recurrent connection.

This layer allows you to specify custom input-to-hidden and
hidden-to-hidden connections by instantiating lasagne.layers.Layer
instances and passing them on initialization.  Note that these connections
can consist of multiple layers chained together.  The output shape for the
provided input-to-hidden and hidden-to-hidden connections must be the same.
If you are looking for a standard, densely-connected recurrent layer,
please see RecurrentLayer.  The output is computed by


\[h_t = \sigma(f_i(x_t) + f_h(h_{t-1}))\]





	Parameters:	incoming : a lasagne.layers.Layer instance or a tuple


The layer feeding into this layer, or the expected input shape.




input_to_hidden : lasagne.layers.Layer


lasagne.layers.Layer instance which connects input to the
hidden state (\(f_i\)).  This layer may be connected to a chain of
layers, which must end in a lasagne.layers.InputLayer with the
same input shape as incoming.




hidden_to_hidden : lasagne.layers.Layer


Layer which connects the previous hidden state to the new state
(\(f_h\)).  This layer may be connected to a chain of layers, which
must end in a lasagne.layers.InputLayer with the same input
shape as hidden_to_hidden‘s output shape.




nonlinearity : callable or None


Nonlinearity to apply when computing new state (\(\sigma\)). If
None is provided, no nonlinearity will be applied.




hid_init : callable, np.ndarray, theano.shared or TensorVariable


Initializer for initial hidden state (\(h_0\)).  If a
TensorVariable (Theano expression) is supplied, it will not be learned
regardless of the value of learn_init.




backwards : bool


If True, process the sequence backwards and then reverse the
output again such that the output from the layer is always
from \(x_1\) to \(x_n\).




learn_init : bool


If True, initial hidden values are learned. If hid_init is a
TensorVariable then the TensorVariable is used and
learn_init is ignored.




gradient_steps : int


Number of timesteps to include in the backpropagated gradient.
If -1, backpropagate through the entire sequence.




grad_clipping : False or float


If a float is provided, the gradient messages are clipped during the
backward pass.  If False, the gradients will not be clipped.  See [R25]
(p. 6) for further explanation.




unroll_scan : bool


If True the recursion is unrolled instead of using scan. For some
graphs this gives a significant speed up but it might also consume
more memory. When unroll_scan is True, backpropagation always
includes the full sequence, so gradient_steps must be set to -1 and
the input sequence length must be known at compile time (i.e., cannot
be given as None).




precompute_input : bool


If True, precompute input_to_hid before iterating through
the sequence. This can result in a speedup at the expense of
an increase in memory usage.




mask_input : lasagne.layers.Layer


Layer which allows for a sequence mask to be input, for when sequences
are of variable length.  Default None, which means no mask will be
supplied (i.e. all sequences are of the same length).










References




	[R25]	(1, 2) Graves, Alex: “Generating sequences with recurrent neural networks.”
arXiv preprint arXiv:1308.0850 (2013).




Examples

The following example constructs a simple CustomRecurrentLayer which
has dense input-to-hidden and hidden-to-hidden connections.

>>> import lasagne
>>> n_batch, n_steps, n_in = (2, 3, 4)
>>> n_hid = 5
>>> l_in = lasagne.layers.InputLayer((n_batch, n_steps, n_in))
>>> l_in_hid = lasagne.layers.DenseLayer(
...     lasagne.layers.InputLayer((None, n_in)), n_hid)
>>> l_hid_hid = lasagne.layers.DenseLayer(
...     lasagne.layers.InputLayer((None, n_hid)), n_hid)
>>> l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid)





The CustomRecurrentLayer can also support “convolutional recurrence”, as is
demonstrated below.

>>> n_batch, n_steps, n_channels, width, height = (2, 3, 4, 5, 6)
>>> n_out_filters = 7
>>> filter_shape = (3, 3)
>>> l_in = lasagne.layers.InputLayer(
...     (n_batch, n_steps, n_channels, width, height))
>>> l_in_to_hid = lasagne.layers.Conv2DLayer(
...     lasagne.layers.InputLayer((None, n_channels, width, height)),
...     n_out_filters, filter_shape, pad='same')
>>> l_hid_to_hid = lasagne.layers.Conv2DLayer(
...     lasagne.layers.InputLayer(l_in_to_hid.output_shape),
...     n_out_filters, filter_shape, pad='same')
>>> l_rec = lasagne.layers.CustomRecurrentLayer(
...     l_in, l_in_to_hid, l_hid_to_hid)






	
get_output_for(inputs, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L327-L460]

	Compute this layer’s output function given a symbolic input variable.





	Parameters:	inputs : list of theano.TensorType


inputs[0] should always be the symbolic input variable.  When
this layer has a mask input (i.e. was instantiated with
mask_input != None, indicating that the lengths of sequences in
each batch vary), inputs should have length 2, where inputs[1]
is the mask.  The mask should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not.  mask should be a matrix of shape
(n_batch, n_time_steps) where mask[i, j] = 1 when j <=
(length of sequence i) and mask[i, j] = 0 when j > (length
of sequence i).







	Returns:	layer_output : theano.TensorType


Symbolic output variable.



















	
class lasagne.layers.RecurrentLayer(incoming, num_units, W_in_to_hid=lasagne.init.Uniform(), W_hid_to_hid=lasagne.init.Uniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, hid_init=lasagne.init.Constant(0.), backwards=False, learn_init=False, gradient_steps=-1, grad_clipping=False, unroll_scan=False, precompute_input=True, mask_input=None, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L463-L572]

	Dense recurrent neural network (RNN) layer

A “vanilla” RNN layer, which has dense input-to-hidden and
hidden-to-hidden connections.  The output is computed as


\[h_t = \sigma(x_t W_x + h_{t-1} W_h + b)\]





	Parameters:	incoming : a lasagne.layers.Layer instance or a tuple


The layer feeding into this layer, or the expected input shape.




num_units : int


Number of hidden units in the layer.




W_in_to_hid : Theano shared variable, numpy array or callable


Initializer for input-to-hidden weight matrix (\(W_x\)).




W_hid_to_hid : Theano shared variable, numpy array or callable


Initializer for hidden-to-hidden weight matrix (\(W_h\)).




b : Theano shared variable, numpy array, callable or None


Initializer for bias vector (\(b\)). If None is provided there will
be no bias.




nonlinearity : callable or None


Nonlinearity to apply when computing new state (\(\sigma\)). If
None is provided, no nonlinearity will be applied.




hid_init : callable, np.ndarray, theano.shared or TensorVariable


Initializer for initial hidden state (\(h_0\)).  If a
TensorVariable (Theano expression) is supplied, it will not be learned
regardless of the value of learn_init.




backwards : bool


If True, process the sequence backwards and then reverse the
output again such that the output from the layer is always
from \(x_1\) to \(x_n\).




learn_init : bool


If True, initial hidden values are learned. If hid_init is a
TensorVariable then learn_init is ignored.




gradient_steps : int


Number of timesteps to include in the backpropagated gradient.
If -1, backpropagate through the entire sequence.




grad_clipping : False or float


If a float is provided, the gradient messages are clipped during the
backward pass.  If False, the gradients will not be clipped.  See [R26]
(p. 6) for further explanation.




unroll_scan : bool


If True the recursion is unrolled instead of using scan. For some
graphs this gives a significant speed up but it might also consume
more memory. When unroll_scan is True, backpropagation always
includes the full sequence, so gradient_steps must be set to -1 and
the input sequence length must be known at compile time (i.e., cannot
be given as None).




precompute_input : bool


If True, precompute input_to_hid before iterating through
the sequence. This can result in a speedup at the expense of
an increase in memory usage.




mask_input : lasagne.layers.Layer


Layer which allows for a sequence mask to be input, for when sequences
are of variable length.  Default None, which means no mask will be
supplied (i.e. all sequences are of the same length).










References




	[R26]	(1, 2) Graves, Alex: “Generating sequences with recurrent neural networks.”
arXiv preprint arXiv:1308.0850 (2013).









	
class lasagne.layers.LSTMLayer(incoming, num_units, ingate=lasagne.layers.Gate(), forgetgate=lasagne.layers.Gate(), cell=lasagne.layers.Gate( W_cell=None, nonlinearity=lasagne.nonlinearities.tanh), outgate=lasagne.layers.Gate(), nonlinearity=lasagne.nonlinearities.tanh, cell_init=lasagne.init.Constant(0.), hid_init=lasagne.init.Constant(0.), backwards=False, learn_init=False, peepholes=True, gradient_steps=-1, grad_clipping=False, unroll_scan=False, precompute_input=True, mask_input=None, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L635-L1061]

	A long short-term memory (LSTM) layer.

Includes optional “peephole connections” and a forget gate.  Based on the
definition in [R27], which is the current common definition.  The output is
computed by


\[\begin{split}i_t &= \sigma_i(x_t W_{xi} + h_{t-1} W_{hi}
       + w_{ci} \odot c_{t-1} + b_i)\\
f_t &= \sigma_f(x_t W_{xf} + h_{t-1} W_{hf}
       + w_{cf} \odot c_{t-1} + b_f)\\
c_t &= f_t \odot c_{t - 1}
       + i_t\sigma_c(x_t W_{xc} + h_{t-1} W_{hc} + b_c)\\
o_t &= \sigma_o(x_t W_{xo} + h_{t-1} W_{ho} + w_{co} \odot c_t + b_o)\\
h_t &= o_t \odot \sigma_h(c_t)\end{split}\]





	Parameters:	incoming : a lasagne.layers.Layer instance or a tuple


The layer feeding into this layer, or the expected input shape.




num_units : int


Number of hidden/cell units in the layer.




ingate : Gate


Parameters for the input gate (\(i_t\)): \(W_{xi}\),
\(W_{hi}\), \(w_{ci}\), \(b_i\), and \(\sigma_i\).




forgetgate : Gate


Parameters for the forget gate (\(f_t\)): \(W_{xf}\),
\(W_{hf}\), \(w_{cf}\), \(b_f\), and \(\sigma_f\).




cell : Gate


Parameters for the cell computation (\(c_t\)): \(W_{xc}\),
\(W_{hc}\), \(b_c\), and \(\sigma_c\).




outgate : Gate


Parameters for the output gate (\(o_t\)): \(W_{xo}\),
\(W_{ho}\), \(w_{co}\), \(b_o\), and \(\sigma_o\).




nonlinearity : callable or None


The nonlinearity that is applied to the output (\(\sigma_h\)). If
None is provided, no nonlinearity will be applied.




cell_init : callable, np.ndarray, theano.shared or TensorVariable


Initializer for initial cell state (\(c_0\)).  If a
TensorVariable (Theano expression) is supplied, it will not be learned
regardless of the value of learn_init.




hid_init : callable, np.ndarray, theano.shared or TensorVariable


Initializer for initial hidden state (\(h_0\)).  If a
TensorVariable (Theano expression) is supplied, it will not be learned
regardless of the value of learn_init.




backwards : bool


If True, process the sequence backwards and then reverse the
output again such that the output from the layer is always
from \(x_1\) to \(x_n\).




learn_init : bool


If True, initial hidden values are learned. If hid_init or
cell_init are TensorVariables then the TensorVariable is used and
learn_init is ignored for that initial state.




peepholes : bool


If True, the LSTM uses peephole connections.
When False, ingate.W_cell, forgetgate.W_cell and
outgate.W_cell are ignored.




gradient_steps : int


Number of timesteps to include in the backpropagated gradient.
If -1, backpropagate through the entire sequence.




grad_clipping: False or float


If a float is provided, the gradient messages are clipped during the
backward pass.  If False, the gradients will not be clipped.  See [R27]
(p. 6) for further explanation.




unroll_scan : bool


If True the recursion is unrolled instead of using scan. For some
graphs this gives a significant speed up but it might also consume
more memory. When unroll_scan is True, backpropagation always
includes the full sequence, so gradient_steps must be set to -1 and
the input sequence length must be known at compile time (i.e., cannot
be given as None).




precompute_input : bool


If True, precompute input_to_hid before iterating through
the sequence. This can result in a speedup at the expense of
an increase in memory usage.




mask_input : lasagne.layers.Layer


Layer which allows for a sequence mask to be input, for when sequences
are of variable length.  Default None, which means no mask will be
supplied (i.e. all sequences are of the same length).










References




	[R27]	(1, 2, 3) Graves, Alex: “Generating sequences with recurrent neural networks.”
arXiv preprint arXiv:1308.0850 (2013).





	
get_output_for(inputs, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L858-L1061]

	Compute this layer’s output function given a symbolic input variable





	Parameters:	inputs : list of theano.TensorType


inputs[0] should always be the symbolic input variable.  When
this layer has a mask input (i.e. was instantiated with
mask_input != None, indicating that the lengths of sequences in
each batch vary), inputs should have length 2, where inputs[1]
is the mask.  The mask should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not.  mask should be a matrix of shape
(n_batch, n_time_steps) where mask[i, j] = 1 when j <=
(length of sequence i) and mask[i, j] = 0 when j > (length
of sequence i).







	Returns:	layer_output : theano.TensorType


Symbolic output variable.



















	
class lasagne.layers.GRULayer(incoming, num_units, resetgate=lasagne.layers.Gate(W_cell=None), updategate=lasagne.layers.Gate(W_cell=None), hidden_update=lasagne.layers.Gate( W_cell=None, lasagne.nonlinearities.tanh), hid_init=lasagne.init.Constant(0.), backwards=False, learn_init=True, gradient_steps=-1, grad_clipping=False, unroll_scan=False, precompute_input=True, mask_input=None, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L1064-L1416]

	Gated Recurrent Unit (GRU) Layer

Implements the recurrent step proposed in [R28], which computes the output
by


\[\begin{split}r_t &= \sigma_r(x_t W_{xr} + h_{t - 1} W_{hr} + b_r)\\
u_t &= \sigma_u(x_t W_{xu} + h_{t - 1} W_{hu} + b_u)\\
c_t &= \sigma_c(x_t W_{xc} + r_t \odot (h_{t - 1} W_{hc}) + b_c)\\
h_t &= (1 - u_t) \odot h_{t - 1} + u_t \odot c_t\end{split}\]





	Parameters:	incoming : a lasagne.layers.Layer instance or a tuple


The layer feeding into this layer, or the expected input shape.




num_units : int


Number of hidden units in the layer.




resetgate : Gate


Parameters for the reset gate (\(r_t\)): \(W_{xr}\),
\(W_{hr}\), \(b_r\), and \(\sigma_r\).




updategate : Gate


Parameters for the update gate (\(u_t\)): \(W_{xu}\),
\(W_{hu}\), \(b_u\), and \(\sigma_u\).




hidden_update : Gate


Parameters for the hidden update (\(c_t\)): \(W_{xc}\),
\(W_{hc}\), \(b_c\), and \(\sigma_c\).




hid_init : callable, np.ndarray, theano.shared or TensorVariable


Initializer for initial hidden state (\(h_0\)).  If a
TensorVariable (Theano expression) is supplied, it will not be learned
regardless of the value of learn_init.




backwards : bool


If True, process the sequence backwards and then reverse the
output again such that the output from the layer is always
from \(x_1\) to \(x_n\).




learn_init : bool


If True, initial hidden values are learned. If hid_init is a
TensorVariable then the TensorVariable is used and
learn_init is ignored.




gradient_steps : int


Number of timesteps to include in the backpropagated gradient.
If -1, backpropagate through the entire sequence.




grad_clipping : False or float


If a float is provided, the gradient messages are clipped during the
backward pass.  If False, the gradients will not be clipped.  See [R28]
(p. 6) for further explanation.




unroll_scan : bool


If True the recursion is unrolled instead of using scan. For some
graphs this gives a significant speed up but it might also consume
more memory. When unroll_scan is True, backpropagation always
includes the full sequence, so gradient_steps must be set to -1 and
the input sequence length must be known at compile time (i.e., cannot
be given as None).




precompute_input : bool


If True, precompute input_to_hid before iterating through
the sequence. This can result in a speedup at the expense of
an increase in memory usage.




mask_input : lasagne.layers.Layer


Layer which allows for a sequence mask to be input, for when sequences
are of variable length.  Default None, which means no mask will be
supplied (i.e. all sequences are of the same length).










Notes

An alternate update for the candidate hidden state is proposed in [R29]:


\[\begin{split}c_t &= \sigma_c(x_t W_{ic} + (r_t \odot h_{t - 1})W_{hc} + b_c)\\\end{split}\]

We use the formulation from [R28] because it allows us to do all matrix
operations in a single dot product.

References




	[R28]	(1, 2, 3, 4) Cho, Kyunghyun, et al: On the properties of neural
machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259 (2014).







	[R29]	(1, 2) Chung, Junyoung, et al.: Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling.
arXiv preprint arXiv:1412.3555 (2014).







	[R30]	Graves, Alex: “Generating sequences with recurrent neural networks.”
arXiv preprint arXiv:1308.0850 (2013).





	
get_output_for(inputs, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L1245-L1416]

	Compute this layer’s output function given a symbolic input variable





	Parameters:	inputs : list of theano.TensorType


inputs[0] should always be the symbolic input variable.  When
this layer has a mask input (i.e. was instantiated with
mask_input != None, indicating that the lengths of sequences in
each batch vary), inputs should have length 2, where inputs[1]
is the mask.  The mask should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not.  mask should be a matrix of shape
(n_batch, n_time_steps) where mask[i, j] = 1 when j <=
(length of sequence i) and mask[i, j] = 0 when j > (length
of sequence i).







	Returns:	layer_output : theano.TensorType


Symbolic output variable.



















	
class lasagne.layers.Gate(W_in=lasagne.init.Normal(0.1), W_hid=lasagne.init.Normal(0.1), W_cell=lasagne.init.Normal(0.1), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.sigmoid)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/recurrent.py#L575-L632]

	Simple class to hold the parameters for a gate connection.  We define
a gate loosely as something which computes the linear mix of two inputs,
optionally computes an element-wise product with a third, adds a bias, and
applies a nonlinearity.





	Parameters:	W_in : Theano shared variable, numpy array or callable


Initializer for input-to-gate weight matrix.




W_hid : Theano shared variable, numpy array or callable


Initializer for hidden-to-gate weight matrix.




W_cell : Theano shared variable, numpy array, callable, or None


Initializer for cell-to-gate weight vector.  If None, no cell-to-gate
weight vector will be stored.




b : Theano shared variable, numpy array or callable


Initializer for input gate bias vector.




nonlinearity : callable or None


The nonlinearity that is applied to the input gate activation. If None
is provided, no nonlinearity will be applied.










References




	[R31]	(1, 2) Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. “Learning to
forget: Continual prediction with LSTM.” Neural computation 12.10
(2000): 2451-2471.




Examples

For LSTMLayer the bias of the forget gate is often initialized to
a large positive value to encourage the layer initially remember the cell
value, see e.g. [R31] page 15.

>>> import lasagne
>>> forget_gate = Gate(b=lasagne.init.Constant(5.0))
>>> l_lstm = LSTMLayer((10, 20, 30), num_units=10,
...                    forgetgate=forget_gate)
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Noise layers


	
class lasagne.layers.DropoutLayer(incoming, p=0.5, rescale=True, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/noise.py#L16-L83]

	Dropout layer

Sets values to zero with probability p. See notes for disabling dropout
during testing.





	Parameters:	incoming : a Layer instance or a tuple


the layer feeding into this layer, or the expected input shape




p : float or scalar tensor


The probability of setting a value to zero




rescale : bool


If true the input is rescaled with input / (1-p) when deterministic
is False.










Notes

The dropout layer is a regularizer that randomly sets input values to
zero; see [R15], [R16] for why this might improve generalization.
During training you should set deterministic to false and during
testing you should set deterministic to true.

If rescale is true the input is scaled with input / (1-p) when
deterministic is false, see references for further discussion. Note that
this implementation scales the input at training time.

References




	[R15]	(1, 2) Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R. R. (2012):
Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.







	[R16]	(1, 2) Srivastava Nitish, Hinton, G., Krizhevsky, A., Sutskever,
I., & Salakhutdinov, R. R. (2014):
Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research, 5(Jun)(2), 1929-1958.





	
get_output_for(input, deterministic=False, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/noise.py#L61-L83]

	



	Parameters:	input : tensor


output from the previous layer




deterministic : bool


If true dropout and scaling is disabled, see notes



















	
lasagne.layers.dropout[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/noise.py#L16-L83]

	alias of DropoutLayer






	
class lasagne.layers.GaussianNoiseLayer(incoming, sigma=0.1, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/noise.py#L88-L132]

	Gaussian noise layer.

Add zero-mean Gaussian noise of given standard deviation to the input [R17].





	Parameters:	incoming : a Layer instance or a tuple


the layer feeding into this layer, or the expected input shape




sigma : float or tensor scalar


Standard deviation of added Gaussian noise










Notes

The Gaussian noise layer is a regularizer. During training you should set
deterministic to false and during testing you should set deterministic to
true.

References




	[R17]	(1, 2) K.-C. Jim, C. Giles, and B. Horne (1996):
An analysis of noise in recurrent neural networks: convergence and
generalization.
IEEE Transactions on Neural Networks, 7(6):1424-1438.





	
get_output_for(input, deterministic=False, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/noise.py#L118-L132]

	



	Parameters:	input : tensor


output from the previous layer




deterministic : bool


If true noise is disabled, see notes
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Shape layers


	
class lasagne.layers.ReshapeLayer(incoming, shape, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L57-L183]

	A layer reshaping its input tensor to another tensor of the same total
number of elements.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape




shape : tuple


The target shape specification. Each element can be one of:


	i, a positive integer directly giving the size of the dimension

	[i], a single-element list of int, denoting to use the size
of the i th input dimension

	-1, denoting to infer the size for this dimension to match
the total number of elements in the input tensor (cannot be used
more than once in a specification)

	TensorVariable directly giving the size of the dimension












Notes

The tensor elements will be fetched and placed in C-like order. That
is, reshaping [1,2,3,4,5,6] to shape (2,3) will result in a matrix
[[1,2,3],[4,5,6]], not in [[1,3,5],[2,4,6]] (Fortran-like order),
regardless of the memory layout of the input tensor. For C-contiguous
input, reshaping is cheap, for others it may require copying the data.

Examples

>>> from lasagne.layers import InputLayer, ReshapeLayer
>>> l_in = InputLayer((32, 100, 20))
>>> l1 = ReshapeLayer(l_in, ((32, 50, 40)))
>>> l1.output_shape
(32, 50, 40)
>>> l_in = InputLayer((None, 100, 20))
>>> l1 = ReshapeLayer(l_in, ([0], [1], 5, -1))
>>> l1.output_shape
(None, 100, 5, 4)










	
lasagne.layers.reshape[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L57-L183]

	alias of ReshapeLayer






	
class lasagne.layers.FlattenLayer(incoming, outdim=2, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L22-L52]

	A layer that flattens its input. The leading outdim-1 dimensions of
the output will have the same shape as the input. The remaining dimensions
are collapsed into the last dimension.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape.




outdim : int


The number of dimensions in the output.











See also


	flatten

	Shortcut










	
lasagne.layers.flatten[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L22-L52]

	alias of FlattenLayer






	
class lasagne.layers.DimshuffleLayer(incoming, pattern, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L188-L278]

	A layer that rearranges the dimension of its input tensor, maintaining
the same same total number of elements.





	Parameters:	incoming : a Layer instance or a tuple


the layer feeding into this layer, or the expected input shape




pattern : tuple


The new dimension order, with each element giving the index
of the dimension in the input tensor or ‘x’ to broadcast it.
For example (3,2,1,0) will reverse the order of a 4-dimensional
tensor. Use ‘x’ to broadcast, e.g. (3,2,1,’x’,0) will
take a 4 tensor of shape (2,3,5,7) as input and produce a
tensor of shape (7,5,3,1,2) with the 4th dimension being
broadcast-able. In general, all dimensions in the input tensor
must be used to generate the output tensor. Omitting a dimension
attempts to collapse it; this can only be done to broadcast-able
dimensions, e.g. a 5-tensor of shape (7,5,3,1,2) with the 4th
being broadcast-able can be shuffled with the pattern (4,2,1,0)
collapsing the 4th dimension resulting in a tensor of shape
(2,3,5,7).










Examples

>>> from lasagne.layers import InputLayer, DimshuffleLayer
>>> l_in = InputLayer((2, 3, 5, 7))
>>> l1 = DimshuffleLayer(l_in, (3, 2, 1, 'x', 0))
>>> l1.output_shape
(7, 5, 3, 1, 2)
>>> l2 = DimshuffleLayer(l1, (4, 2, 1, 0))
>>> l2.output_shape
(2, 3, 5, 7)










	
lasagne.layers.dimshuffle[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L188-L278]

	alias of DimshuffleLayer






	
class lasagne.layers.PadLayer(incoming, width, val=0, batch_ndim=2, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L283-L333]

	Pad all dimensions except the first batch_ndim with width
zeros on both sides, or with another value specified in val.
Individual padding for each dimension or edge can be specified
using a tuple or list of tuples for width.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape




width : int, iterable of int, or iterable of tuple


Padding width. If an int, pads each axis symmetrically with the same
amount in the beginning and end. If an iterable of int, defines the
symmetric padding width separately for each axis. If an iterable of
tuples of two ints, defines a seperate padding width for each beginning
and end of each axis.




val : float


Value used for padding




batch_ndim : int


Dimensions up to this value are not padded. For padding convolutional
layers this should be set to 2 so the sample and filter dimensions are
not padded















	
lasagne.layers.pad[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L283-L333]

	alias of PadLayer






	
class lasagne.layers.SliceLayer(incoming, indices, axis=-1, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/shape.py#L338-L387]

	Slices the input at a specific axis and at specific indices.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape




indices : int or slice instance


If an int, selects a single element from the given axis, dropping
the axis. If a slice, selects all elements in the given range, keeping
the axis.




axis : int


Specifies the axis from which the indices are selected.










Examples

>>> from lasagne.layers import SliceLayer, InputLayer
>>> l_in = InputLayer((2, 3, 4))
>>> SliceLayer(l_in, indices=0, axis=1).output_shape
... # equals input[:, 0]
(2, 4)
>>> SliceLayer(l_in, indices=slice(0, 1), axis=1).output_shape
... # equals input[:, 0:1]
(2, 1, 4)
>>> SliceLayer(l_in, indices=slice(-2, None), axis=-1).output_shape
... # equals input[..., -2:]
(2, 3, 2)
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Merge layers


	
class lasagne.layers.ConcatLayer(incomings, axis=1, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/merge.py#L14-L39]

	Concatenates multiple inputs along the specified axis. Inputs should have
the same shape except for the dimension specified in axis, which can have
different sizes.





	Parameters:	incomings : a list of Layer instances or tuples


The layers feeding into this layer, or expected input shapes




axis : int


Axis which inputs are joined over















	
lasagne.layers.concat[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/merge.py#L14-L39]

	alias of ConcatLayer






	
class lasagne.layers.ElemwiseMergeLayer(incomings, merge_function, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/merge.py#L44-L81]

	This layer performs an elementwise merge of its input layers.
It requires all input layers to have the same output shape.





	Parameters:	incomings : a list of Layer instances or tuples


the layers feeding into this layer, or expected input shapes,
with all incoming shapes being equal




merge_function : callable


the merge function to use. Should take two arguments and return the
updated value. Some possible merge functions are theano.tensor:
mul, add, maximum and minimum.











See also


	ElemwiseSumLayer

	Shortcut for sum layer.










	
class lasagne.layers.ElemwiseSumLayer(incomings, coeffs=1, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/merge.py#L84-L125]

	This layer performs an elementwise sum of its input layers.
It requires all input layers to have the same output shape.





	Parameters:	incomings : a list of Layer instances or tuples


the layers feeding into this layer, or expected input shapes,
with all incoming shapes being equal




coeffs: list or scalar


A same-sized list of coefficients, or a single coefficient that
is to be applied to all instances. By default, these will not
be included in the learnable parameters of this layer.










Notes

Depending on your architecture, this can be used to avoid the more
costly ConcatLayer. For example, instead of concatenating layers
before a DenseLayer, insert separate DenseLayer instances
of the same number of output units and add them up afterwards. (This avoids
the copy operations in concatenation, but splits up the dot product.)
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Embedding layers


	
class lasagne.layers.EmbeddingLayer(incoming, input_size, output_size, W=lasagne.init.Normal(), **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/embedding.py#L13-L67]

	A layer for word embeddings. The input should be an integer type
Tensor variable.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape.




input_size: int


The Number of different embeddings. The last embedding will have index
input_size - 1.




output_size : int


The size of each embedding.




W : Theano shared variable, numpy array or callable


The embedding matrix.










Examples

>>> from lasagne.layers import EmbeddingLayer, InputLayer, get_output
>>> import theano
>>> x = T.imatrix()
>>> l_in = InputLayer((3, ))
>>> W = np.arange(3*5).reshape((3, 5)).astype('float32')
>>> l1 = EmbeddingLayer(l_in, input_size=3, output_size=5, W=W)
>>> output = get_output(l1, x)
>>> f = theano.function([x], output)
>>> x_test = np.array([[0, 2], [1, 2]]).astype('int32')
>>> f(x_test)
array([[[  0.,   1.,   2.,   3.,   4.],
        [ 10.,  11.,  12.,  13.,  14.]],

       [[  5.,   6.,   7.,   8.,   9.],
        [ 10.,  11.,  12.,  13.,  14.]]], dtype=float32)
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lasagne.layers.corrmm


	
class lasagne.layers.corrmm.Conv2DMMLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/corrmm.py#L30-L217]

	2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and
applies an elementwise nonlinearity.  This is an alternative implementation
which uses theano.sandbox.cuda.blas.GpuCorrMM directly.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape. The
output of this layer should be a 4D tensor, with shape
(batch_size, num_input_channels, input_rows, input_columns).




num_filters : int


The number of learnable convolutional filters this layer has.




filter_size : int or iterable of int


An integer or a 2-element tuple specifying the size of the filters.




stride : int or iterable of int


An integer or a 2-element tuple specifying the stride of the
convolution operation.




pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)


By default, the convolution is only computed where the input and the
filter fully overlap (a valid convolution). When stride=1, this
yields an output that is smaller than the input by filter_size - 1.
The pad argument allows you to implicitly pad the input with zeros,
extending the output size.

A single integer results in symmetric zero-padding of the given size on
all borders, a tuple of two integers allows different symmetric padding
per dimension.

'full' pads with one less than the filter size on both sides. This
is equivalent to computing the convolution wherever the input and the
filter overlap by at least one position.

'same' pads with half the filter size on both sides (one less on
the second side for an even filter size). When stride=1, this
results in an output size equal to the input size.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent
integer values due to optimizations by Theano.




untie_biases : bool (default: False)


If False, the layer will have a bias parameter for each channel,
which is shared across all positions in this channel. As a result, the
b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each
position in each channel. As a result, the b attribute will be a
3D tensor.




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. This should initialize the
layer weights to a 4D array with shape
(num_filters, num_input_channels, filter_rows, filter_columns).
See lasagne.utils.create_param() for more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If None is provided, the
layer will have no biases. This should initialize the layer biases to
a 1D array with shape (num_filters,) if untied_biases is set to
False. If it is set to True, its shape should be
(num_filters, input_rows, input_columns) instead.
See lasagne.utils.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.




flip_filters : bool (default: False)


Whether to flip the filters and perform a convolution, or not to flip
them and perform a correlation. Flipping adds a bit of overhead, so it
is disabled by default. In most cases this does not make a difference
anyway because the filters are learnt. However, flip_filters should
be set to True if weights are loaded into it that were learnt using
a regular lasagne.layers.Conv2DLayer, for example.




**kwargs


Any additional keyword arguments are passed to the Layer superclass.










Notes

Unlike lasagne.layers.Conv2DLayer, this layer properly supports
pad='same'. It is not emulated. This should result in better
performance.

Attributes







	W
	(Theano shared variable) Variable representing the filter weights.


	b
	(Theano shared variable) Variable representing the biases.













          

      

      

    


    
         Copyright 2014–2015, Lasagne contributors.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Lasagne 0.1 documentation 

          	lasagne.layers 
 
      

    


    
      
          
            
  
lasagne.layers.cuda_convnet


	
class lasagne.layers.cuda_convnet.Conv2DCCLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0, untie_biases=False, W=None, b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, dimshuffle=True, flip_filters=False, partial_sum=1, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/cuda_convnet.py#L38-L364]

	2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and
applies an elementwise nonlinearity.  This is an alternative implementation
which uses the cuda-convnet wrappers from pylearn2:
pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape. This
layer expects a 4D tensor as its input, with shape
(batch_size, num_input_channels, input_rows, input_columns).
If automatic dimshuffling is disabled (see notes), the shape should be
(num_input_channels, input_rows, input_columns, batch_size)
instead (c01b axis order).




num_filters : int


The number of learnable convolutional filters this layer has.




filter_size : int or iterable of int


An integer or a 2-element tuple specifying the size of the filters.
This layer does not support non-square filters.




stride : int or iterable of int


An integer or a 2-element tuple specifying the stride of the
convolution operation. This layer does not support using different
strides along both axes.




pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)


By default, the convolution is only computed where the input and the
filter fully overlap (a valid convolution). When stride=1, this
yields an output that is smaller than the input by filter_size - 1.
The pad argument allows you to implicitly pad the input with zeros,
extending the output size.

A single integer results in symmetric zero-padding of the given size on
all borders. This layer does not support using different amounts of
padding along both axes, but for compatibility to other layers you can
still specify the padding as a tuple of two same-valued integers.

'full' pads with one less than the filter size on both sides. This
is equivalent to computing the convolution wherever the input and the
filter overlap by at least one position.

'same' pads with half the filter size on both sides (one less on
the second side for an even filter size). When stride=1, this
results in an output size equal to the input size.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent
integer values due to optimizations by Theano.




untie_biases : bool (default: False)


If False, the layer will have a bias parameter for each channel,
which is shared across all positions in this channel. As a result, the
b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each
position in each channel. As a result, the b attribute will be a
3D tensor.




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. This should initialize the
layer weights to a 4D array with shape
(num_filters, num_input_channels, filter_rows, filter_columns).
If automatic dimshuffling is disabled (see notes), the shape should be
(num_input_channels, input_rows, input_columns, num_filters)
instead (c01b axis order). See lasagne.utils.create_param() for
more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If None is provided, the
layer will have no biases. This should initialize the layer biases to
a 1D array with shape (num_filters,) if untied_biases is set to
False. If it is set to True, its shape should be
(num_filters, input_rows, input_columns) instead.
See lasagne.utils.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.




dimshuffle : bool (default: True)


If True, the layer will automatically apply the necessary
dimshuffle operations to deal with the fact that the cuda-convnet
implementation uses c01b (batch-size-last) axis order instead of bc01
(batch-size-first), which is the Lasagne/Theano default. This makes the
layer interoperable with other Lasagne layers.

If False, this automatic dimshuffling is disabled and the layer
will expect its input and parameters to have c01b axis order. It is up
to the user to ensure this. ShuffleBC01ToC01BLayer and
ShuffleC01BToBC01Layer can be used to convert between bc01 and
c01b axis order.




flip_filters : bool (default: False)


Whether to flip the filters and perform a convolution, or not to flip
them and perform a correlation. Flipping adds a bit of overhead, so it
is disabled by default. In most cases this does not make a difference
anyway because the filters are learnt. However, flip_filters should
be set to True if weights are loaded into it that were learnt using
a regular lasagne.layers.Conv2DLayer, for example.




partial_sum : int or None (default: 1)


This value tunes the trade-off between memory usage and performance.
You can specify any positive integer that is a divisor of the output
feature map size (i.e. output rows times output columns). Higher
values decrease memory usage, but also performance. Specifying 0 or
None means the highest possible value will be used. The Lasagne
default of 1 gives the best performance, but also the highest
memory usage.

More information about this parameter can be found in the
cuda-convnet documentation [https://code.google.com/p/cuda-convnet/wiki/LayerParams].




**kwargs


Any additional keyword arguments are passed to the Layer superclass.










Notes

Unlike lasagne.layers.Conv2DLayer, this layer properly supports
pad='same'. It is not emulated. This should result in better
performance.

The cuda-convnet convolution implementation has several limitations:


	only square filters are supported.

	only identical strides in the horizontal and vertical direction are
supported.

	the number of filters must be a multiple of 16.

	the number of input channels must be even, or less than or equal to
3.

	if the gradient w.r.t. the input is to be computed, the number of
channels must be divisible by 4.

	performance is optimal when the batch size is a multiple of 128 (but
other batch sizes are supported).

	this layer only works on the GPU.



The cuda-convnet convolution implementation uses c01b (batch-size-last)
axis order by default. The Theano/Lasagne default is bc01
(batch-size-first). This layer automatically adds the necessary dimshuffle
operations for the input and the parameters so that it is interoperable
with other layers that assume bc01 axis order. However, these additional
dimshuffle operations may sometimes negatively affect performance. For this
reason, it is possible to disable them by setting dimshuffle=False. In
this case, the user is expected to manually ensure that the input and
parameters have the correct axis order. ShuffleBC01ToC01BLayer and
ShuffleC01BToBC01Layer can be used to convert between bc01 and
c01b axis order.

Attributes







	W
	(Theano shared variable) Variable representing the filter weights.


	b
	(Theano shared variable) Variable representing the biases.










	
class lasagne.layers.cuda_convnet.MaxPool2DCCLayer(incoming, pool_size, stride=None, ignore_border=False, dimshuffle=True, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/cuda_convnet.py#L367-L530]

	2D max-pooling layer

Performs 2D max-pooling over the two trailing axes of a 4D input tensor
(or over axis 1 and 2 if dimshuffle=False, see notes). This is an
alternative implementation which uses the cuda-convnet wrappers from
pylearn2: pylearn2.sandbox.cuda_convnet.pool.MaxPool.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_size : integer or iterable


The length of the pooling region in each dimension.  If an integer, it
is promoted to a square pooling region. If an iterable, it should have
two elements. This layer does not support non-square pooling regions.




stride : integer, iterable or None


The strides between sucessive pooling regions in each dimension.
If None then stride = pool_size. This layer does not support
using different strides along both axes.




pad : integer or iterable (default: 0)


This implementation does not support custom padding, so this argument
must always be set to 0. It exists only to make sure the
interface is compatible with lasagne.layers.MaxPool2DLayer.




ignore_border : bool (default: False)


This implementation always includes partial pooling regions, so this
argument must always be set to False. It exists only to make sure the
interface is compatible with lasagne.layers.MaxPool2DLayer.




dimshuffle : bool (default: True)


If True, the layer will automatically apply the necessary
dimshuffle operations to deal with the fact that the cuda-convnet
implementation uses c01b (batch-size-last) axis order instead of bc01
(batch-size-first), which is the Lasagne/Theano default. This makes the
layer interoperable with other Lasagne layers.

If False, this automatic dimshuffling is disabled and the layer
will expect its input and parameters to have c01b axis order. It is up
to the user to ensure this. ShuffleBC01ToC01BLayer and
ShuffleC01BToBC01Layer can be used to convert between bc01 and
c01b axis order.




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.










Notes

The cuda-convnet max-pooling implementation has several limitations:


	only square pooling regions are supported.

	only identical strides in the horizontal and vertical direction are
supported.

	only square inputs are supported. (This limitation does not exist for
the convolution implementation.)

	partial pooling regions are always included (ignore_border is forced
to False).

	custom padding is not supported (pad is forced to 0).

	this layer only works on the GPU.



The cuda-convnet pooling implementation uses c01b (batch-size-last)
axis order by default. The Theano/Lasagne default is bc01
(batch-size-first). This layer automatically adds the necessary dimshuffle
operations for the input and the parameters so that it is interoperable
with other layers that assume bc01 axis order. However, these additional
dimshuffle operations may sometimes negatively affect performance. For this
reason, it is possible to disable them by setting dimshuffle=False. In
this case, the user is expected to manually ensure that the input and
parameters have the correct axis order. ShuffleBC01ToC01BLayer and
ShuffleC01BToBC01Layer can be used to convert between bc01 and
c01b axis order.






	
class lasagne.layers.cuda_convnet.ShuffleBC01ToC01BLayer(incoming, name=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/cuda_convnet.py#L535-L556]

	shuffle 4D input from bc01 (batch-size-first) order to c01b
(batch-size-last) order.

This layer can be used for interoperability between c01b and bc01 layers.
For example, MaxPool2DCCLayer and Conv2DCCLayer operate
in c01b mode when they are created with dimshuffle=False.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




**kwargs


Any additional keyword arguments are passed to the Layer superclass.















	
lasagne.layers.cuda_convnet.bc01_to_c01b[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/cuda_convnet.py#L535-L556]

	alias of ShuffleBC01ToC01BLayer






	
class lasagne.layers.cuda_convnet.ShuffleC01BToBC01Layer(incoming, name=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/cuda_convnet.py#L561-L582]

	shuffle 4D input from c01b (batch-size-last) order to bc01
(batch-size-first) order.

This layer can be used for interoperability between c01b and bc01 layers.
For example, MaxPool2DCCLayer and Conv2DCCLayer operate
in c01b mode when they are created with dimshuffle=False.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




**kwargs


Any additional keyword arguments are passed to the Layer superclass.















	
lasagne.layers.cuda_convnet.c01b_to_bc01[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/cuda_convnet.py#L561-L582]

	alias of ShuffleC01BToBC01Layer






	
class lasagne.layers.cuda_convnet.NINLayer_c01b(incoming, num_units, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/cuda_convnet.py#L589-L676]

	Network-in-network layer with c01b axis ordering.

This is a c01b version of lasagne.layers.NINLayer.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape




num_units : int


The number of units of the layer




untie_biases : bool


If False, the network has a single bias vector similar to a dense
layer. If True, a separate bias vector is used for each spatial
position.




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. If a shared variable or a
numpy array is provided the shape should be
(num_units, num_input_channels).
See lasagne.utils.create_param() for more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If a shared variable or a
numpy array is provided the correct shape is determined by the
untie_biases setting. If untie_biases is False, then the shape
should be (num_units,). If untie_biases is True then the shape
should be (num_units, rows, columns). If None is provided the
layer will have no biases.
See lasagne.utils.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.




**kwargs


Any additional keyword arguments are passed to the Layer superclass.


















          

      

      

    


    
         Copyright 2014–2015, Lasagne contributors.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Lasagne 0.1 documentation 

          	lasagne.layers 
 
      

    


    
      
          
            
  
lasagne.layers.dnn


	
class lasagne.layers.dnn.Pool2DDNNLayer(incoming, pool_size, stride=None, pad=(0, 0), ignore_border=True, mode='max', **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/dnn.py#L27-L115]

	2D pooling layer

Performs 2D mean- or max-pooling over the two trailing axes of a 4D input
tensor. This is an alternative implementation which uses
theano.sandbox.cuda.dnn.dnn_pool directly.





	Parameters:	incoming : a Layer instance or tuple


The layer feeding into this layer, or the expected input shape.




pool_size : integer or iterable


The length of the pooling region in each dimension. If an integer, it
is promoted to a square pooling region. If an iterable, it should have
two elements.




stride : integer, iterable or None


The strides between sucessive pooling regions in each dimension.
If None then stride = pool_size.




pad : integer or iterable


Number of elements to be added on each side of the input
in each dimension. Each value must be less than
the corresponding stride.




ignore_border : bool (default: True)


This implementation never includes partial pooling regions, so this
argument must always be set to True. It exists only to make sure the
interface is compatible with lasagne.layers.MaxPool2DLayer.




mode : string


Pooling mode, one of ‘max’, ‘average_inc_pad’ or ‘average_exc_pad’.
Defaults to ‘max’.




**kwargs


Any additional keyword arguments are passed to the Layer
superclass.










Notes

The value used to pad the input is chosen to be less than
the minimum of the input, so that the output of each pooling region
always corresponds to some element in the unpadded input region.

This is a drop-in replacement for lasagne.layers.MaxPool2DLayer.
Its interface is the same, except it does not support the ignore_border
argument.






	
class lasagne.layers.dnn.MaxPool2DDNNLayer(incoming, pool_size, stride=None, pad=(0, 0), ignore_border=True, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/dnn.py#L118-L129]

	2D max-pooling layer

Subclass of Pool2DDNNLayer fixing mode='max', provided for
compatibility to other MaxPool2DLayer classes.






	
class lasagne.layers.dnn.Conv2DDNNLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/layers/dnn.py#L132-L319]

	2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and
applies an elementwise nonlinearity.  This is an alternative implementation
which uses theano.sandbox.cuda.dnn.dnn_conv directly.





	Parameters:	incoming : a Layer instance or a tuple


The layer feeding into this layer, or the expected input shape. The
output of this layer should be a 4D tensor, with shape
(batch_size, num_input_channels, input_rows, input_columns).




num_filters : int


The number of learnable convolutional filters this layer has.




filter_size : int or iterable of int


An integer or a 2-element tuple specifying the size of the filters.




stride : int or iterable of int


An integer or a 2-element tuple specifying the stride of the
convolution operation.




pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)


By default, the convolution is only computed where the input and the
filter fully overlap (a valid convolution). When stride=1, this
yields an output that is smaller than the input by filter_size - 1.
The pad argument allows you to implicitly pad the input with zeros,
extending the output size.

A single integer results in symmetric zero-padding of the given size on
all borders, a tuple of two integers allows different symmetric padding
per dimension.

'full' pads with one less than the filter size on both sides. This
is equivalent to computing the convolution wherever the input and the
filter overlap by at least one position.

'same' pads with half the filter size on both sides (one less on
the second side for an even filter size). When stride=1, this
results in an output size equal to the input size.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent
integer values due to optimizations by Theano.




untie_biases : bool (default: False)


If False, the layer will have a bias parameter for each channel,
which is shared across all positions in this channel. As a result, the
b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each
position in each channel. As a result, the b attribute will be a
3D tensor.




W : Theano shared variable, numpy array or callable


An initializer for the weights of the layer. This should initialize the
layer weights to a 4D array with shape
(num_filters, num_input_channels, filter_rows, filter_columns).
See lasagne.utils.create_param() for more information.




b : Theano shared variable, numpy array, callable or None


An initializer for the biases of the layer. If None is provided, the
layer will have no biases. This should initialize the layer biases to
a 1D array with shape (num_filters,) if untied_biases is set to
False. If it is set to True, its shape should be
(num_filters, input_rows, input_columns) instead.
See lasagne.utils.create_param() for more information.




nonlinearity : callable or None


The nonlinearity that is applied to the layer activations. If None
is provided, the layer will be linear.




flip_filters : bool (default: False)


Whether to flip the filters and perform a convolution, or not to flip
them and perform a correlation. Flipping adds a bit of overhead, so it
is disabled by default. In most cases this does not make a difference
anyway because the filters are learnt. However, flip_filters should
be set to True if weights are loaded into it that were learnt using
a regular lasagne.layers.Conv2DLayer, for example.




**kwargs


Any additional keyword arguments are passed to the Layer superclass.










Notes

Unlike lasagne.layers.Conv2DLayer, this layer properly supports
pad='same'. It is not emulated. This should result in better
performance.

Attributes







	W
	(Theano shared variable) Variable representing the filter weights.


	b
	(Theano shared variable) Variable representing the biases.
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lasagne.updates

Functions to generate Theano update dictionaries for training.

The update functions implement different methods to control the learning
rate for use with stochastic gradient descent.

Update functions take a loss expression or a list of gradient expressions and
a list of parameters as input and return an ordered dictionary of updates:







	sgd
	Stochastic Gradient Descent (SGD) updates


	momentum
	Stochastic Gradient Descent (SGD) updates with momentum


	nesterov_momentum
	Stochastic Gradient Descent (SGD) updates with Nesterov momentum


	adagrad
	Adagrad updates


	rmsprop
	RMSProp updates


	adadelta
	Adadelta updates


	adam
	Adam updates





Two functions can be used to further modify the updates to include momentum:







	apply_momentum
	Returns a modified update dictionary including momentum


	apply_nesterov_momentum
	Returns a modified update dictionary including Nesterov momentum





Finally, we provide two helper functions to constrain the norm of tensors:







	norm_constraint
	Max weight norm constraints and gradient clipping


	total_norm_constraint
	Rescales a list of tensors based on their combined norm





norm_constraint() can be used to constrain the norm of parameters
(as an alternative to weight decay), or for a form of gradient clipping.
total_norm_constraint() constrain the total norm of a list of tensors.
This is often used when training recurrent neural networks.


Examples

>>> import lasagne
>>> import theano.tensor as T
>>> import theano
>>> from lasagne.nonlinearities import softmax
>>> from lasagne.layers import InputLayer, DenseLayer, get_output
>>> from lasagne.updates import sgd, apply_momentum
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=3, nonlinearity=softmax)
>>> x = T.matrix('x')  # shp: num_batch x num_features
>>> y = T.ivector('y') # shp: num_batch
>>> l_out = get_output(l1, x)
>>> params = lasagne.layers.get_all_params(l1)
>>> loss = T.mean(T.nnet.categorical_crossentropy(l_out, y))
>>> updates_sgd = sgd(loss, params, learning_rate=0.0001)
>>> updates = apply_momentum(updates_sgd, params, momentum=0.9)
>>> train_function = theano.function([x, y], updates=updates)








Update functions


	
lasagne.updates.sgd(loss_or_grads, params, learning_rate)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L113-L140]

	Stochastic Gradient Descent (SGD) updates

Generates update expressions of the form:


	param := param - learning_rate * gradient







	Parameters:	loss_or_grads : symbolic expression or list of expressions


A scalar loss expression, or a list of gradient expressions




params : list of shared variables


The variables to generate update expressions for




learning_rate : float or symbolic scalar


The learning rate controlling the size of update steps







	Returns:	OrderedDict


A dictionary mapping each parameter to its update expression















	
lasagne.updates.momentum(loss_or_grads, params, learning_rate, momentum=0.9)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L191-L227]

	Stochastic Gradient Descent (SGD) updates with momentum

Generates update expressions of the form:


	velocity := momentum * velocity - learning_rate * gradient

	param := param + velocity







	Parameters:	loss_or_grads : symbolic expression or list of expressions


A scalar loss expression, or a list of gradient expressions




params : list of shared variables


The variables to generate update expressions for




learning_rate : float or symbolic scalar


The learning rate controlling the size of update steps




momentum : float or symbolic scalar, optional


The amount of momentum to apply. Higher momentum results in
smoothing over more update steps. Defaults to 0.9.







	Returns:	OrderedDict


A dictionary mapping each parameter to its update expression











See also


	apply_momentum

	Generic function applying momentum to updates

	nesterov_momentum

	Nesterov’s variant of SGD with momentum





Notes

Higher momentum also results in larger update steps. To counter that,
you can optionally scale your learning rate by 1 - momentum.






	
lasagne.updates.nesterov_momentum(loss_or_grads, params, learning_rate, momentum=0.9)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L284-L325]

	Stochastic Gradient Descent (SGD) updates with Nesterov momentum

Generates update expressions of the form:


	velocity := momentum * velocity + updates[param] - param

	param := param + momentum * velocity + updates[param] - param







	Parameters:	loss_or_grads : symbolic expression or list of expressions


A scalar loss expression, or a list of gradient expressions




params : list of shared variables


The variables to generate update expressions for




learning_rate : float or symbolic scalar


The learning rate controlling the size of update steps




momentum : float or symbolic scalar, optional


The amount of momentum to apply. Higher momentum results in
smoothing over more update steps. Defaults to 0.9.







	Returns:	OrderedDict


A dictionary mapping each parameter to its update expression











See also


	apply_nesterov_momentum

	Function applying momentum to updates





Notes

Higher momentum also results in larger update steps. To counter that,
you can optionally scale your learning rate by 1 - momentum.

The classic formulation of Nesterov momentum (or Nesterov accelerated
gradient) requires the gradient to be evaluated at the predicted next
position in parameter space. Here, we use the formulation described at
https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617,
which allows the gradient to be evaluated at the current parameters.






	
lasagne.updates.adagrad(loss_or_grads, params, learning_rate=1.0, epsilon=1e-06)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L328-L384]

	Adagrad updates

Scale learning rates by dividing with the square root of accumulated
squared gradients. See [R42] for further description.





	Parameters:	loss_or_grads : symbolic expression or list of expressions


A scalar loss expression, or a list of gradient expressions




params : list of shared variables


The variables to generate update expressions for




learning_rate : float or symbolic scalar


The learning rate controlling the size of update steps




epsilon : float or symbolic scalar


Small value added for numerical stability







	Returns:	OrderedDict


A dictionary mapping each parameter to its update expression










Notes

Using step size eta Adagrad calculates the learning rate for feature i at
time step t as:


\[\eta_{t,i} = \frac{\eta}
{\sqrt{\sum^t_{t^\prime} g^2_{t^\prime,i}+\epsilon}} g_{t,i}\]

as such the learning rate is monotonically decreasing.

Epsilon is not included in the typical formula, see [R43].

References
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Adaptive subgradient methods for online learning and stochastic
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lasagne.updates.rmsprop(loss_or_grads, params, learning_rate=1.0, rho=0.9, epsilon=1e-06)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L387-L442]

	RMSProp updates

Scale learning rates by dividing with the moving average of the root mean
squared (RMS) gradients. See [R44] for further description.





	Parameters:	loss_or_grads : symbolic expression or list of expressions


A scalar loss expression, or a list of gradient expressions




params : list of shared variables


The variables to generate update expressions for




learning_rate : float or symbolic scalar


The learning rate controlling the size of update steps




rho : float or symbolic scalar


Gradient moving average decay factor




epsilon : float or symbolic scalar


Small value added for numerical stability







	Returns:	OrderedDict


A dictionary mapping each parameter to its update expression










Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the
moving average slowly and a value close to 0 will decay the moving average
fast.

Using the step size \(\eta\) and a decay factor \(\rho\) the
learning rate \(\eta_t\) is calculated as:


\[\begin{split}r_t &= \rho r_{t-1} + (1-\rho)*g^2\\
\eta_t &= \frac{\eta}{\sqrt{r_t + \epsilon}}\end{split}\]

References




	[R44]	(1, 2) Tieleman, T. and Hinton, G. (2012):
Neural Networks for Machine Learning, Lecture 6.5 - rmsprop.
Coursera. http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20)









	
lasagne.updates.adadelta(loss_or_grads, params, learning_rate=1.0, rho=0.95, epsilon=1e-06)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L445-L523]

	Adadelta updates

Scale learning rates by a the ratio of accumulated gradients to accumulated
step sizes, see [R45] and notes for further description.





	Parameters:	loss_or_grads : symbolic expression or list of expressions


A scalar loss expression, or a list of gradient expressions




params : list of shared variables


The variables to generate update expressions for




learning_rate : float or symbolic scalar


The learning rate controlling the size of update steps




rho : float or symbolic scalar


Squared gradient moving average decay factor




epsilon : float or symbolic scalar


Small value added for numerical stability







	Returns:	OrderedDict


A dictionary mapping each parameter to its update expression










Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the
moving average slowly and a value close to 0 will decay the moving average
fast.

rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to
work for multiple datasets (MNIST, speech).

In the paper, no learning rate is considered (so learning_rate=1.0).
Probably best to keep it at this value.
epsilon is important for the very first update (so the numerator does
not become 0).

Using the step size eta and a decay factor rho the learning rate is
calculated as:


\[\begin{split}r_t &= \rho r_{t-1} + (1-\rho)*g^2\\
\eta_t &= \eta \frac{\sqrt{s_{t-1} + \epsilon}}
                      {\sqrt{r_t + \epsilon}}\\
s_t &= \rho s_{t-1} + (1-\rho)*g^2\end{split}\]

References




	[R45]	(1, 2) Zeiler, M. D. (2012):
ADADELTA: An Adaptive Learning Rate Method.
arXiv Preprint arXiv:1212.5701.









	
lasagne.updates.adam(loss_or_grads, params, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L526-L587]

	Adam updates

Adam updates implemented as in [R46].





	Parameters:	loss_or_grads : symbolic expression or list of expressions


A scalar loss expression, or a list of gradient expressions




params : list of shared variables


The variables to generate update expressions for




learning_rate : float


Learning rate




beta_1 : float


Exponential decay rate for the first moment estimates.




beta_2 : float


Exponential decay rate for the second moment estimates.




epsilon : float


Constant for numerical stability.







	Returns:	OrderedDict


A dictionary mapping each parameter to its update expression










Notes

The paper [R46] includes an additional hyperparameter lambda. This is only
needed to prove convergence of the algorithm and has no practical use
(personal communication with the authors), it is therefore omitted here.

References




	[R46]	(1, 2, 3) Kingma, Diederik, and Jimmy Ba (2014):
Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980.











Update modification functions


	
lasagne.updates.apply_momentum(updates, params=None, momentum=0.9)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L143-L188]

	Returns a modified update dictionary including momentum

Generates update expressions of the form:


	velocity := momentum * velocity + updates[param] - param

	param := param + velocity







	Parameters:	updates : OrderedDict


A dictionary mapping parameters to update expressions




params : iterable of shared variables, optional


The variables to apply momentum to. If omitted, will apply
momentum to all updates.keys().




momentum : float or symbolic scalar, optional


The amount of momentum to apply. Higher momentum results in
smoothing over more update steps. Defaults to 0.9.







	Returns:	OrderedDict


A copy of updates with momentum updates for all params.











See also


	momentum

	Shortcut applying momentum to SGD updates





Notes

Higher momentum also results in larger update steps. To counter that,
you can optionally scale your learning rate by 1 - momentum.






	
lasagne.updates.apply_nesterov_momentum(updates, params=None, momentum=0.9)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L230-L281]

	Returns a modified update dictionary including Nesterov momentum

Generates update expressions of the form:


	velocity := momentum * velocity + updates[param] - param

	param := param + momentum * velocity + updates[param] - param







	Parameters:	updates : OrderedDict


A dictionary mapping parameters to update expressions




params : iterable of shared variables, optional


The variables to apply momentum to. If omitted, will apply
momentum to all updates.keys().




momentum : float or symbolic scalar, optional


The amount of momentum to apply. Higher momentum results in
smoothing over more update steps. Defaults to 0.9.







	Returns:	OrderedDict


A copy of updates with momentum updates for all params.











See also


	nesterov_momentum

	Shortcut applying Nesterov momentum to SGD updates





Notes

Higher momentum also results in larger update steps. To counter that,
you can optionally scale your learning rate by 1 - momentum.

The classic formulation of Nesterov momentum (or Nesterov accelerated
gradient) requires the gradient to be evaluated at the predicted next
position in parameter space. Here, we use the formulation described at
https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617,
which allows the gradient to be evaluated at the current parameters.








Helper functions


	
lasagne.updates.norm_constraint(tensor_var, max_norm, norm_axes=None, epsilon=1e-07)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L590-L667]

	Max weight norm constraints and gradient clipping

This takes a TensorVariable and rescales it so that incoming weight
norms are below a specified constraint value. Vectors violating the
constraint are rescaled so that they are within the allowed range.





	Parameters:	tensor_var : TensorVariable


Theano expression for update, gradient, or other quantity.




max_norm : scalar


This value sets the maximum allowed value of any norm in
tensor_var.




norm_axes : sequence (list or tuple)


The axes over which to compute the norm.  This overrides the
default norm axes defined for the number of dimensions
in tensor_var. When this is not specified and tensor_var is a
matrix (2D), this is set to (0,). If tensor_var is a 3D, 4D or
5D tensor, it is set to a tuple listing all axes but axis 0. The
former default is useful for working with dense layers, the latter
is useful for 1D, 2D and 3D convolutional layers.
(Optional)




epsilon : scalar, optional


Value used to prevent numerical instability when dividing by
very small or zero norms.







	Returns:	TensorVariable


Input tensor_var with rescaling applied to weight vectors
that violate the specified constraints.










Notes

When norm_axes is not specified, the axes over which the norm is
computed depend on the dimensionality of the input variable. If it is
2D, it is assumed to come from a dense layer, and the norm is computed
over axis 0. If it is 3D, 4D or 5D, it is assumed to come from a
convolutional layer and the norm is computed over all trailing axes
beyond axis 0. For other uses, you should explicitly specify the axes
over which to compute the norm using norm_axes.

Examples

>>> param = theano.shared(
...     np.random.randn(100, 200).astype(theano.config.floatX))
>>> update = param + 100
>>> update = norm_constraint(update, 10)
>>> func = theano.function([], [], updates=[(param, update)])
>>> # Apply constrained update
>>> _ = func()
>>> from lasagne.utils import compute_norms
>>> norms = compute_norms(param.get_value())
>>> np.isclose(np.max(norms), 10)
True










	
lasagne.updates.total_norm_constraint(tensor_vars, max_norm, epsilon=1e-07, return_norm=False)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/updates.py#L670-L735]

	Rescales a list of tensors based on their combined norm

If the combined norm of the input tensors exceeds the threshold then all
tensors are rescaled such that the combined norm is equal to the threshold.

Scaling the norms of the gradients is often used when training recurrent
neural networks [R47].





	Parameters:	tensor_vars : List of TensorVariables.


Tensors to be rescaled.




threshold : float


Threshold value for total norm.




epsilon : scalar, optional


Value used to prevent numerical instability when dividing by
very small or zero norms.




return_norm : bool


If true the total norm is also returned.







	Returns:	tensor_vars_scaled : list of TensorVariables


The scaled tensor variables.




norm : Theano scalar


The combined norms of the input variables prior to rescaling,
only returned if return_norms=True.










Notes

The total norm can be used to monitor training.

References




	[R47]	(1, 2) Sutskever, I., Vinyals, O., & Le, Q. V. (2014): Sequence to sequence
learning with neural networks. In Advances in Neural Information
Processing Systems (pp. 3104-3112).




Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> import lasagne
>>> from lasagne.updates import sgd, total_norm_constraint
>>> x = T.matrix()
>>> y = T.ivector()
>>> l_in = InputLayer((5, 10))
>>> l1 = DenseLayer(l_in, num_units=7, nonlinearity=T.nnet.softmax)
>>> output = lasagne.layers.get_output(l1, x)
>>> cost = T.mean(T.nnet.categorical_crossentropy(output, y))
>>> all_params = lasagne.layers.get_all_params(l1)
>>> all_grads = T.grad(cost, all_params)
>>> scaled_grads = total_norm_constraint(all_grads, 5)
>>> updates = sgd(scaled_grads, all_params, learning_rate=0.1)
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lasagne.init

Functions to create initializers for parameter variables.


Examples

>>> from lasagne.layers import DenseLayer
>>> from lasagne.init import Constant, GlorotUniform
>>> l1 = DenseLayer((100,20), num_units=50, W=GlorotUniform(), b=Constant(0.0))








	
class lasagne.init.Initializer[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L17-L45]

	Base class for parameter tensor initializers.

The Initializer class represents a weight initializer used
to initialize weight parameters in a neural network layer. It should be
subclassed when implementing new types of weight initializers.


	
sample(shape)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L32-L45]

	Sample should return a theano.tensor of size shape and data type
theano.config.floatX.





	Parameters:	shape : tuple or int


Integer or tuple specifying the size of the returned
matrix.




returns : theano.tensor


Matrix of size shape and dtype theano.config.floatX.



















	
class lasagne.init.Constant(val=0.0)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L273-L285]

	Initialize weights with constant value.





	Parameters:	val : float


Constant value for weights.















	
class lasagne.init.Normal(std=0.01, mean=0.0)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L48-L65]

	Sample initial weights from the Gaussian distribution.

Initial weight parameters are sampled from N(mean, std).





	Parameters:	std : float


Std of initial parameters.




mean : float


Mean of initial parameters.















	
class lasagne.init.Uniform(range=0.01, std=None, mean=0.0)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L68-L99]

	Sample initial weights from the uniform distribution.

Parameters are sampled from U(a, b).





	Parameters:	range : float or tuple


When std is None then range determines a, b. If range is a float the
weights are sampled from U(-range, range). If range is a tuple the
weights are sampled from U(range[0], range[1]).




std : float or None


If std is a float then the weights are sampled from
U(mean - np.sqrt(3) * std, mean + np.sqrt(3) * std).




mean : float


see std for description.















	
class lasagne.init.Glorot(initializer, gain=1.0, c01b=False)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L102-L174]

	Glorot weight initialization [R1].

This is also known as Xavier initialization.





	Parameters:	initializer : lasagne.init.Initializer


Initializer used to sample the weights, must accept std in its
constructor to sample from a distribution with a given standard
deviation.




gain : float or ‘relu’


Scaling factor for the weights. Set this to 1.0 for linear and sigmoid
units, to ‘relu’ or sqrt(2) for rectified linear units. Other transfer
functions may need different factors.




c01b : bool


For a lasagne.layers.cuda_convnet.Conv2DCCLayer constructed
with dimshuffle=False, c01b must be set to True to compute
the correct fan-in and fan-out.











See also


	GlorotNormal

	Shortcut with Gaussian initializer.

	GlorotUniform

	Shortcut with uniform initializer.





Notes

For a DenseLayer, if gain='relu' and initializer=Uniform,
the weights are initialized as


\[\begin{split}a &= \sqrt{\frac{6}{fan_{in}+fan_{out}}}\\
W &\sim U[-a, a]\end{split}\]

If gain=1 and initializer=Normal, the weights are initialized as


\[\begin{split}\sigma &= \sqrt{\frac{2}{fan_{in}+fan_{out}}}\\
W &\sim N(0, \sigma)\end{split}\]

References




	[R1]	(1, 2) Xavier Glorot and Yoshua Bengio (2010):
Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and
statistics.









	
class lasagne.init.GlorotNormal(gain=1.0, c01b=False)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L177-L183]

	Glorot with weights sampled from the Normal distribution.

See Glorot for a description of the parameters.






	
class lasagne.init.GlorotUniform(gain=1.0, c01b=False)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L186-L192]

	Glorot with weights sampled from the Uniform distribution.

See Glorot for a description of the parameters.






	
class lasagne.init.He(initializer, gain=1.0, c01b=False)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L195-L252]

	He weight initialization [R2].

Weights are initialized with a standard deviation of
\(\sigma = gain \sqrt{\frac{1}{fan_{in}}}\).





	Parameters:	initializer : lasagne.init.Initializer


Initializer used to sample the weights, must accept std in its
constructor to sample from a distribution with a given standard
deviation.




gain : float or ‘relu’


Scaling factor for the weights. Set this to 1.0 for linear and sigmoid
units, to ‘relu’ or sqrt(2) for rectified linear units. Other transfer
functions may need different factors.




c01b : bool


For a lasagne.layers.cuda_convnet.Conv2DCCLayer constructed
with dimshuffle=False, c01b must be set to True to compute
the correct fan-in and fan-out.











See also


	HeNormal

	Shortcut with Gaussian initializer.

	HeUniform

	Shortcut with uniform initializer.





References




	[R2]	(1, 2) Kaiming He et al. (2015):
Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. arXiv preprint arXiv:1502.01852.









	
class lasagne.init.HeNormal(gain=1.0, c01b=False)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L255-L261]

	He initializer with weights sampled from the Normal distribution.

See He for a description of the parameters.






	
class lasagne.init.HeUniform(gain=1.0, c01b=False)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L264-L270]

	He initializer with weights sampled from the Uniform distribution.

See He for a description of the parameters.






	
class lasagne.init.Orthogonal(gain=1.0)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L322-L352]

	Intialize weights as Orthogonal matrix.

Orthogonal matrix initialization. For n-dimensional shapes where n > 2,
the n-1 trailing axes are flattened. For convolutional layers, this
corresponds to the fan-in, so this makes the initialization usable for
both dense and convolutional layers.





	Parameters:	gain : float or ‘relu’


‘relu’ gives gain of sqrt(2).















	
class lasagne.init.Sparse(sparsity=0.1, std=0.01)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/init.py#L288-L319]

	Initialize weights as sparse matrix.





	Parameters:	sparsity : float


Exact fraction of non-zero values per column. Larger values give less
sparsity.




std : float


Non-zero weights are sampled from N(0, std).
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lasagne.nonlinearities

Non-linear activation functions for artificial neurons.







	sigmoid(x)
	Sigmoid activation function \(\varphi(x) = \frac{1}{1 + e^{-x}}\)


	softmax(x)
	Softmax activation function \(\varphi(\mathbf{x})_j = \frac{e^{\mathbf{x}_j}}{\sum_{k=1}^K e^{\mathbf{x}_k}}\) where \(K\) is the total number of neurons in the layer.


	tanh(x)
	Tanh activation function \(\varphi(x) = \tanh(x)\)


	rectify(x)
	Rectify activation function \(\varphi(x) = \max(0, x)\)


	LeakyRectify([leakiness])
	Leaky rectifier \(\varphi(x) = \max(\alpha \cdot x, x)\)


	leaky_rectify(x)
	Instance of LeakyRectify with leakiness \(\alpha=0.01\)


	very_leaky_rectify(x)
	Instance of LeakyRectify with leakiness \(\alpha=1/3\)


	linear(x)
	Linear activation function \(\varphi(x) = x\)


	identity(x)
	Linear activation function \(\varphi(x) = x\)






Detailed description


	
lasagne.nonlinearities.sigmoid(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py#L9-L22]

	Sigmoid activation function \(\varphi(x) = \frac{1}{1 + e^{-x}}\)





	Parameters:	x : float32


The activation (the summed, weighted input of a neuron).







	Returns:	float32 in [0, 1]


The output of the sigmoid function applied to the activation.















	
lasagne.nonlinearities.softmax(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py#L26-L43]

	Softmax activation function
\(\varphi(\mathbf{x})_j =
\frac{e^{\mathbf{x}_j}}{\sum_{k=1}^K e^{\mathbf{x}_k}}\)
where \(K\) is the total number of neurons in the layer. This
activation function gets applied row-wise.





	Parameters:	x : float32


The activation (the summed, weighted input of a neuron).







	Returns:	float32 where the sum of the row is 1 and each single value is in [0, 1]


The output of the softmax function applied to the activation.















	
lasagne.nonlinearities.tanh(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py#L47-L60]

	Tanh activation function \(\varphi(x) = \tanh(x)\)





	Parameters:	x : float32


The activation (the summed, weighted input of a neuron).







	Returns:	float32 in [-1, 1]


The output of the tanh function applied to the activation.















	
lasagne.nonlinearities.rectify(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py#L64-L81]

	Rectify activation function \(\varphi(x) = \max(0, x)\)





	Parameters:	x : float32


The activation (the summed, weighted input of a neuron).







	Returns:	float32


The output of the rectify function applied to the activation.















	
class lasagne.nonlinearities.LeakyRectify(leakiness=0.01)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py#L85-L152]

	Leaky rectifier \(\varphi(x) = \max(\alpha \cdot x, x)\)

The leaky rectifier was introduced in [R34]. Compared to the standard
rectifier rectify(), it has a nonzero gradient for negative input,
which often helps convergence.





	Parameters:	leakiness : float


Slope for negative input, usually between 0 and 1.
A leakiness of 0 will lead to the standard rectifier,
a leakiness of 1 will lead to a linear activation function,
and any value in between will give a leaky rectifier.











See also


	leaky_rectify

	Instance with default leakiness of 0.01, as in [R34].

	very_leaky_rectify

	Instance with high leakiness of 1/3, as in [R35].





References




	[R34]	(1, 2, 3) Maas et al. (2013):
Rectifier Nonlinearities Improve Neural Network Acoustic Models,
http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf







	[R35]	(1, 2) Graham, Benjamin (2014):
Spatially-sparse convolutional neural networks,
http://arxiv.org/abs/1409.6070




Examples

In contrast to other activation functions in this module, this is
a class that needs to be instantiated to obtain a callable:

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((None, 100))
>>> from lasagne.nonlinearities import LeakyRectify
>>> custom_rectify = LeakyRectify(0.1)
>>> l1 = DenseLayer(l_in, num_units=200, nonlinearity=custom_rectify)





Alternatively, you can use the provided instance for leakiness=0.01:

>>> from lasagne.nonlinearities import leaky_rectify
>>> l2 = DenseLayer(l_in, num_units=200, nonlinearity=leaky_rectify)





Or the one for a high leakiness of 1/3:

>>> from lasagne.nonlinearities import very_leaky_rectify
>>> l3 = DenseLayer(l_in, num_units=200, nonlinearity=very_leaky_rectify)





Methods







	__call__(x)
	Apply the leaky rectify function to the activation x.










	
lasagne.nonlinearities.leaky_rectify(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py]

	Instance of LeakyRectify with leakiness \(\alpha=0.01\)






	
lasagne.nonlinearities.very_leaky_rectify(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py]

	Instance of LeakyRectify with leakiness \(\alpha=1/3\)






	
lasagne.nonlinearities.linear(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/nonlinearities.py#L170-L183]

	Linear activation function \(\varphi(x) = x\)





	Parameters:	x : float32


The activation (the summed, weighted input of a neuron).







	Returns:	float32


The output of the identity applied to the activation.
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lasagne.objectives

Provides some minimal help with building loss expressions for training or
validating a neural network.

Three functions build element- or item-wise loss expressions from network
predictions and targets:







	binary_crossentropy
	Computes the binary cross-entropy between predictions and targets.


	categorical_crossentropy
	Computes the categorical cross-entropy between predictions and targets.


	squared_error
	Computes the element-wise squared difference between two tensors.





A convenience function aggregates such losses into a scalar expression
suitable for differentiation:







	aggregate
	Aggregates an element- or item-wise loss to a scalar loss.





Note that these functions only serve to write more readable code, but are
completely optional. Essentially, any differentiable scalar Theano expression
can be used as a training objective.


Examples

Assuming you have a simple neural network for 3-way classification:

>>> from lasagne.layers import InputLayer, DenseLayer, get_output
>>> from lasagne.nonlinearities import softmax, rectify
>>> l_in = InputLayer((100, 20))
>>> l_hid = DenseLayer(l_in, num_units=30, nonlinearity=rectify)
>>> l_out = DenseLayer(l_hid, num_units=3, nonlinearity=softmax)





And Theano variables representing your network input and targets:

>>> import theano
>>> data = theano.tensor.matrix('data')
>>> targets = theano.tensor.matrix('targets')





You’d first construct an element-wise loss expression:

>>> from lasagne.objectives import categorical_crossentropy, aggregate
>>> predictions = get_output(l_out, data)
>>> loss = categorical_crossentropy(predictions, targets)





Then aggregate it into a scalar (you could also just call mean() on it):

>>> loss = aggregate(loss, mode='mean')





Finally, this gives a loss expression you can pass to any of the update
methods in lasagne.updates. For validation of a network, you will
usually want to repeat these steps with deterministic network output, i.e.,
without dropout or any other nondeterministic computation in between:

>>> test_predictions = get_output(l_out, data, deterministic=True)
>>> test_loss = categorical_crossentropy(test_predictions, targets)
>>> test_loss = aggregate(test_loss)





This gives a loss expression good for monitoring validation error.




Loss functions


	
lasagne.objectives.binary_crossentropy(predictions, targets)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/objectives.py#L77-L99]

	Computes the binary cross-entropy between predictions and targets.


\[L = -t \log(p) - (1 - t) \log(1 - p)\]





	Parameters:	predictions : Theano tensor


Predictions in (0, 1), such as sigmoidal output of a neural network.




targets : Theano tensor


Targets in [0, 1], such as ground truth labels.







	Returns:	Theano tensor


An expression for the element-wise binary cross-entropy.










Notes

This is the loss function of choice for binary classification problems
and sigmoid output units.






	
lasagne.objectives.categorical_crossentropy(predictions, targets)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/objectives.py#L102-L129]

	Computes the categorical cross-entropy between predictions and targets.


\[L_i = - \sum_j{t_{i,j} \log(p_{i,j})}\]





	Parameters:	predictions : Theano 2D tensor


Predictions in (0, 1), such as softmax output of a neural network,
with data points in rows and class probabilities in columns.




targets : Theano 2D tensor or 1D tensor


Either targets in [0, 1] matching the layout of predictions, or
a vector of int giving the correct class index per data point.







	Returns:	Theano 1D tensor


An expression for the item-wise categorical cross-entropy.










Notes

This is the loss function of choice for multi-class classification
problems and softmax output units. For hard targets, i.e., targets
that assign all of the probability to a single class per data point,
providing a vector of int for the targets is usually slightly more
efficient than providing a matrix with a single 1.0 per row.






	
lasagne.objectives.squared_error(a, b)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/objectives.py#L132-L152]

	Computes the element-wise squared difference between two tensors.


\[L = (p - t)^2\]





	Parameters:	a, b : Theano tensor


The tensors to compute the squared difference between.







	Returns:	Theano tensor


An expression for the item-wise squared difference.










Notes

This is the loss function of choice for many regression problems
or auto-encoders with linear output units.








Aggregation functions


	
lasagne.objectives.aggregate(loss, weights=None, mode='mean')[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/objectives.py#L155-L200]

	Aggregates an element- or item-wise loss to a scalar loss.





	Parameters:	loss : Theano tensor


The loss expression to aggregate.




weights : Theano tensor, optional


The weights for each element or item, must be broadcastable to
the same shape as loss if given. If omitted, all elements will
be weighted the same.




mode : {‘mean’, ‘sum’, ‘normalized_sum’}


Whether to aggregate by averaging, by summing or by summing and
dividing by the total weights (which requires weights to be given).







	Returns:	Theano scalar


A scalar loss expression suitable for differentiation.










Notes

By supplying binary weights (i.e., only using values 0 and 1), this
function can also be used for masking out particular entries in the
loss expression. Note that masked entries still need to be valid
values, not-a-numbers (NaNs) will propagate through.

When applied to batch-wise loss expressions, setting mode to
'normalized_sum' ensures that the loss per batch is of a similar
magnitude, independent of associated weights. However, it means that
a given datapoint contributes more to the loss when it shares a batch
with low-weighted or masked datapoints than with high-weighted ones.
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lasagne.regularization

Functions to apply regularization to the weights in a network.

We provide functions to calculate the L1 and L2 penalty. Penalty functions
take a tensor as input and calculate the penalty contribution from that tensor:







	l1
	Computes the L1 norm of a tensor


	l2
	Computes the squared L2 norm of a tensor





A helper function can be used to apply a penalty function to a tensor or a
list of tensors:







	apply_penalty
	Computes the total cost for applying a specified penalty to a tensor or group of tensors.





Finally we provide two helper functions for applying a penalty function to the
parameters in a layer or the parameters in a group of layers:







	regularize_layer_params_weighted
	Computes a regularization cost by applying a penalty to the parameters of a layer or group of layers, weighted by a coefficient for each layer.


	regularize_network_params
	Computes a regularization cost by applying a penalty to the parameters of all layers in a network.






Examples

>>> import lasagne
>>> import theano.tensor as T
>>> import theano
>>> from lasagne.nonlinearities import softmax
>>> from lasagne.layers import InputLayer, DenseLayer, get_output
>>> from lasagne.regularization import regularize_layer_params_weighted, l2, l1
>>> from lasagne.regularization import regularize_layer_params
>>> layer_in = InputLayer((100, 20))
>>> layer1 = DenseLayer(layer_in, num_units=3)
>>> layer2 = DenseLayer(layer1, num_units=5, nonlinearity=softmax)
>>> x = T.matrix('x')  # shp: num_batch x num_features
>>> y = T.ivector('y') # shp: num_batch
>>> l_out = get_output(layer2, x)
>>> loss = T.mean(T.nnet.categorical_crossentropy(l_out, y))
>>> layers = {layer1: 0.1, layer2: 0.5}
>>> l2_penalty = regularize_layer_params_weighted(layers, l2)
>>> l1_penalty = regularize_layer_params(layer2, l1) * 1e-4
>>> loss = loss + l2_penalty + l1_penalty








Helper functions


	
lasagne.regularization.apply_penalty(tensor_or_tensors, penalty, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/regularization.py#L85-L105]

	Computes the total cost for applying a specified penalty
to a tensor or group of tensors.





	Parameters:	tensor_or_tensors : Theano tensor or list of tensors

penalty : callable

**kwargs


keyword arguments passed to penalty.







	Returns:	Theano scalar


a scalar expression for the total penalty cost















	
lasagne.regularization.regularize_layer_params(layer, penalty, tags={'regularizable': True}, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/regularization.py#L108-L135]

	Computes a regularization cost by applying a penalty to the parameters
of a layer or group of layers.





	Parameters:	layer : a Layer instances or list of layers.

penalty : callable

tags: dict


Tag specifications which filter the parameters of the layer or layers.
By default, only parameters with the regularizable tag are included.




**kwargs


keyword arguments passed to penalty.







	Returns:	Theano scalar


a scalar expression for the cost















	
lasagne.regularization.regularize_layer_params_weighted(layers, penalty, tags={'regularizable': True}, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/regularization.py#L138-L164]

	Computes a regularization cost by applying a penalty to the parameters
of a layer or group of layers, weighted by a coefficient for each layer.





	Parameters:	layers : dict


A mapping from Layer instances to coefficients.




penalty : callable

tags: dict


Tag specifications which filter the parameters of the layer or layers.
By default, only parameters with the regularizable tag are included.




**kwargs


keyword arguments passed to penalty.







	Returns:	Theano scalar


a scalar expression for the cost















	
lasagne.regularization.regularize_network_params(layer, penalty, tags={'regularizable': True}, **kwargs)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/regularization.py#L167-L189]

	Computes a regularization cost by applying a penalty to the parameters
of all layers in a network.





	Parameters:	layer : a Layer instance.


Parameters of this layer and all layers below it will be penalized.




penalty : callable

tags: dict


Tag specifications which filter the parameters of the layer or layers.
By default, only parameters with the regularizable tag are included.




**kwargs


keyword arguments passed to penalty.







	Returns:	Theano scalar


a scalar expression for the cost

















Penalty functions


	
lasagne.regularization.l1(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/regularization.py#L55-L67]

	Computes the L1 norm of a tensor





	Parameters:	x : Theano tensor




	Returns:	Theano scalar


l1 norm (sum of absolute values of elements)















	
lasagne.regularization.l2(x)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/regularization.py#L70-L82]

	Computes the squared L2 norm of a tensor





	Parameters:	x : Theano tensor




	Returns:	Theano scalar


squared l2 norm (sum of squared values of elements)
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A module with a package-wide random number generator,
used for weight initialization and seeding noise layers.
This can be replaced by a numpy.random.RandomState instance with a
particular seed to facilitate reproducibility.


	
lasagne.random.get_rng()[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/random.py#L14-L24]

	Get the package-level random number generator.





	Returns:	numpy.random.RandomState instance


The numpy.random.RandomState instance passed to the most
recent call of set_rng(), or numpy.random if set_rng()
has never been called.















	
lasagne.random.set_rng(new_rng)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/random.py#L27-L36]

	Set the package-level random number generator.





	Parameters:	new_rng : numpy.random or a numpy.random.RandomState instance


The random number generator to use.


















          

      

      

    


    
         Copyright 2014–2015, Lasagne contributors.
      Created using Sphinx 1.2.3.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Lasagne 0.1 documentation 
 
      

    


    
      
          
            
  
lasagne.utils


	
lasagne.utils.floatX(arr)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/utils.py#L7-L21]

	Converts data to a numpy array of dtype theano.config.floatX.





	Parameters:	arr : array_like


The data to be converted.







	Returns:	numpy ndarray


The input array in the floatX dtype configured for Theano.
If arr is an ndarray of correct dtype, it is returned as is.















	
lasagne.utils.shared_empty(dim=2, dtype=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/utils.py#L24-L48]

	Creates empty Theano shared variable.

Shortcut to create an empty Theano shared variable with
the specified number of dimensions.





	Parameters:	dim : int, optional


The number of dimensions for the empty variable, defaults to 2.




dtype : a numpy data-type, optional


The desired dtype for the variable. Defaults to the Theano
floatX dtype.







	Returns:	Theano shared variable


An empty Theano shared variable of dtype dtype with
dim dimensions.















	
lasagne.utils.as_theano_expression(input)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/utils.py#L51-L76]

	Wrap as Theano expression.

Wraps the given input as a Theano constant if it is not
a valid Theano expression already. Useful to transparently
handle numpy arrays and Python scalars, for example.





	Parameters:	input : number, numpy array or Theano expression


Expression to be converted to a Theano constant.







	Returns:	Theano symbolic constant


Theano constant version of input.















	
lasagne.utils.one_hot(x, m=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/utils.py#L79-L113]

	One-hot representation of integer vector.

Given a vector of integers from 0 to m-1, returns a matrix
with a one-hot representation, where each row corresponds
to an element of x.





	Parameters:	x : integer vector


The integer vector to convert to a one-hot representation.




m : int, optional


The number of different columns for the one-hot representation. This
needs to be strictly greater than the maximum value of x.
Defaults to max(x) + 1.







	Returns:	Theano tensor variable


A Theano tensor variable of shape (n, m), where n is the
length of x, with the one-hot representation of x.










Notes

If your integer vector represents target class memberships, and you wish to
compute the cross-entropy between predictions and the target class
memberships, then there is no need to use this function, since the function
lasagne.objectives.categorical_crossentropy() can compute the
cross-entropy from the integer vector directly.






	
lasagne.utils.unique(l)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/utils.py#L116-L137]

	Filters duplicates of iterable.

Create a new list from l with duplicate entries removed,
while preserving the original order.





	Parameters:	l : iterable


Input iterable to filter of duplicates.







	Returns:	list


A list of elements of l without duplicates and in the same order.















	
lasagne.utils.compute_norms(array, norm_axes=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/utils.py#L180-L229]

	Compute incoming weight vector norms.





	Parameters:	array : ndarray


Weight array.




norm_axes : sequence (list or tuple)


The axes over which to compute the norm.  This overrides the
default norm axes defined for the number of dimensions
in array. When this is not specified and array is a 2D array,
this is set to (0,). If array is a 3D, 4D or 5D array, it is
set to a tuple listing all axes but axis 0. The former default is
useful for working with dense layers, the latter is useful for 1D,
2D and 3D convolutional layers.
(Optional)







	Returns:	norms : 1D array


1D array of incoming weight vector norms.










Examples

>>> array = np.random.randn(100, 200)
>>> norms = compute_norms(array)
>>> norms.shape
(200,)





>>> norms = compute_norms(array, norm_axes=(1,))
>>> norms.shape
(100,)










	
lasagne.utils.create_param(spec, shape, name=None)[source] [https://github.com/Lasagne/Lasagne/blob/v0.1/lasagne/utils.py#L232-L314]

	Helper method to create Theano shared variables for layer parameters
and to initialize them.





	Parameters:	spec : numpy array, Theano shared variable, or callable


Either of the following:


	a numpy array with the initial parameter values

	a Theano shared variable representing the parameters

	a function or callable that takes the desired shape of
the parameter array as its single argument and returns
a numpy array.






shape : iterable of int


a tuple or other iterable of integers representing the desired
shape of the parameter array.




name : string, optional


If a new variable is created, the name to give to the parameter
variable. This is ignored if spec is already a Theano shared
variable.







	Returns:	Theano shared variable


a Theano shared variable representing layer parameters. If a
numpy array was provided, the variable is initialized to
contain this array. If a shared variable was provided, it is
simply returned. If a callable was provided, it is called, and
its output is used to initialize the variable.










Notes

This function is called by Layer.add_param() in the constructor
of most Layer subclasses. This enables those layers to
support initialization with numpy arrays, existing Theano shared
variables, and callables for generating initial parameter values.
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